Leipziger Forscher entschlüsseln Rätsel der Sorptionshysterese

Das physikalische Phänomen der Sorptionshysterese ist seit mehr als 100 Jahren bekannt:

Poröse Oberflächen nehmen Moleküle auf und geben sie auch wieder ab, wobei die Gesamtmenge der Moleküle im Porensystem während der Aufnahme und Abgabe unterschiedlich ist, obwohl die äußeren Bedingungen wie Druck und Temperatur völlig gleich sind. Die Wissenschaftler Jörg Kärger, Rustem Valiullin, Sergej Naumov und Petrik Galvosas von der Abteilung Grenzflächenphysik der Fakultät für Physik und Geowissenschaften der Universität Leipzig haben sich dieses Phänomens angenommen und sind zu überraschenden Ergebnissen gekommen, wie die renommierte Fachzeitschrift „Nature“ kürzlich berichtete.

Bislang war die Wissenschaft nach Angaben von Professor Kärger davon ausgegangen, dass die Geschwindigkeit, in der sich ein Gleichgewicht der Moleküle bei Adsorption und Desorption einstellt, durch eine Verlangsamung der molekularen Beweglichkeiten hervorgerufen wird.

Die Leipziger Forscher stellten nun fest, dass das Tempo der Gleichgewichtseinstellung eine Folge der Umverteilung der Moleküle und der Entspannungsprozesse im Porensystem ist, die damit verbunden sind.

Möglich war die Entschlüsselung dieses Rätsels geworden, weil sich die Wissenschaftlergruppe eines neuen Experimentalansatzes bediente: Sie ging dem dynamischen Prozess der Sorptionshysterese mittels verschiedener Verfahren der Kernmagnetischen Resonanz auf den Grund.

Poröse Systeme kommen unter anderem in der Industrie zum Einsatz, wenn etwa bestimmte Stoffe voneinander getrennt werden sollen. Auch bei der Umwandlung von Stoffen werden poröse Oberflächen eingesetzt. Die Untersuchungen dazu, wie sich flüssige oder gasförmige Moleküle in solchen Porensystemen verhalten, sind von außerordentlicher Bedeutung für die Praxis: Ein technologischer Prozess kann nämlich nicht schneller verlaufen als es die Geschwindigkeit zulässt, mit der die beteiligten Moleküle in das Porensystem eintreten und es wieder verlassen. Eine schnelle Umwandlung des Moleküls im Porensystem nutzt nämlich gar nichts, wenn dieses dann sehr lange braucht, um aus dem Porensystem wieder auszutreten.

weitere Informationen
Prof. Dr. Jörg Kärger
Telefon: 0341 97-32502
E-Mail: kaerger@physik.uni-leipzig.de

Media Contact

Dr. Bärbel Adams idw

Weitere Informationen:

http://www.grenzflaechenphysik.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer