Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kaffeesatzlesen im Quantenrauschen

08.12.2006
Physiker der Universität Mainz gewinnen Informationen aus den zufälligen Mustern in Atomwolken und können damit einen fundamentalen Effekt der Quantenphysik erstmals an Atomen nachweisen.

Störendes Rauschen umgibt uns alltäglich in unserer Umwelt. So tritt es zum Beispiel bei schlechtem Handyempfang oder beim Flimmern des Fernsehers auf. In technischen Anwendungen versucht man dieses Rauschen so weit wie möglich zu vermeiden.

Doch selbst wenn alle Störeinflüsse beseitigt sind, verbleibt nach den Gesetzen der Quantenphysik ein gewisses Quantenrauschen, das prinzipiell nicht umgangen werden kann. Physiker der Johannes Gutenberg-Universität Mainz konnten dieses Quantenrauschen in ultrakalten atomaren Gaswolken nun nutzbar machen und zeigen, dass subtile Verbindungen in diesem Rauschen bestehen können, aus denen sich Informationen über einen früheren Zustand perfekter Ordnung der Atome gewinnen lassen. Die Ergebnisse der Mainzer Forscher werden in der aktuellen Ausgabe des renommierten Wissenschaftsmagazins Nature vorgestellt.

Die Forschungsergebnisse eröffnen den Physikern der Arbeitsgruppe von Prof. Immanuel Bloch einen neuen Weg, komplexe quantenmechanische Systeme aus vielen Teilchen zu untersuchen. Ein tieferes Verständnis dieser Systeme kann unter anderem dazu beitragen, die Rätsel der Hochtemperatur-Supraleitung zu lösen.

... mehr zu:
»Atom »Quantenrauschen »Teilchen

Die Forscher nutzen dabei das in vielen Bereichen eingesetzte Verfahren der Korrelationsanalyse. In den Wirtschaftswissenschaften werden beispielsweise Aktienkurse verschiedener Zeiten miteinander in Beziehung gesetzt, um Trends zu erkennen und Vorhersagen zu treffen. Der Kurs einer einzelnen Aktie hängt dabei von vielen unterschiedlichen Faktoren ab, von denen die meisten für jede Aktie spezifisch sind. Werden jedoch Korrelationen - also ähnliche Entwicklungen - zwischen den Kursen unterschiedlicher Aktien nachgewiesen, so kann dies auf "versteckte" gemeinsame Faktoren, zum Beispiel steigende Rohstoffpreise, hinweisen. Statt Beziehungen zwischen Aktienwerten analysieren die Mainzer Forscher - basierend auf einem Vorschlag von Physikern der Harvard University - das Quantenrauschen in Bildern atomarer Gaswolken und konnten damit Informationen über den ursprünglichen Zustand der Atome gewinnen.

Für ihr Experiment kühlen die Mainzer Wissenschaftler dünne Wolken fermionischer Atome auf extrem niedrige Temperaturen knapp über dem absoluten Nullpunkt, der bei etwa minus 273 Grad Celsius liegt, ab. Anschließend werden die Teilchen in einen künstlichen Kristall aus Licht transferiert, welcher durch die geschickte Überlagerung mehrerer Laserstrahlen erzeugt wird. Für die Atome bildet der Lichtkristall eine regelmäßige Anordnung mikroskopischer Töpfchen, in denen sie gefangen werden. Aufgrund ihrer niedrigen Temperatur streben die Atome in den Bereich kleinster potentieller Energie im Zentrum des Kristalls. Da es sich bei den Teilchen um "individualistische" Fermionen handelt, kann jedes "Potentialtöpfchen" nur ein Atom aufnehmen. Dieses Verhalten ist allein auf das Pauli-Prinzip - eine fundamentale Quanteneigenschaft - zurückzuführen. Als Konsequenz reihen sich die Atome entlang der Kristallachsen wie an Perlenschnüren auf und bilden eine perfekt geordnete mikroskopische Struktur.

Sobald das Laserlicht abrupt abgeschaltet wird, löst sich der Kristall auf und die Atome können sich frei im Raum ausbreiten. Durch die individuelle Bewegung der einzelnen Atome geht ihre ursprüngliche Ordnung verloren. Nach einer kurzen Zeit hat sich die Atomwolke soweit ausgedehnt, dass sie photographiert werden kann. Die Korrelationen innerhalb des Rauschens hängen nun entscheidend von der Natur der Teilchen ab.

In der Quantenphysik unterscheidet man zwischen zwei Klassen von Teilchen: Bosonen und Fermionen. Die Teilchen aus den jeweiligen Klassen weisen ein fundamental unterschiedliches "Sozialverhalten" auf. Während Bosonen geselliger Natur sind und sich bevorzugt am selben Ort aufhalten, sind Fermionen strikte Einzelgänger. Sie folgen dabei dem Pauli-Prinzip, welches eine mehrfache Besetzung desselben Quantenzustandes durch identische Teilchen verbietet. So sind zum Beispiel die Elektronen in der Hülle eines Atoms fermionische Teilchen. Wie die untersten Sprossen einer Leiter werden daher die niedrigsten Umlaufbahnen in der Hülle des Atoms von jeweils nur einem Elektron besetzt. Insbesondere erklärt sich aus diesem Prinzip, warum Materie nicht einfach in sich zusammenstürzt. Neben den fermionischen Grundbausteinen des Atoms (Elektronen und Nukleonen) kann auch das Atom selbst als zusammengesetztes Teilchen wiederum ein Fermion sein.

Im Jahr 1956 führten die Pioniere der Quantenoptik Robert Hanbury Brown und Richard Twiss ein Aufsehen erregendes Experiment durch, in welchem sie Korrelationen zwischen Photonen (Lichtteilchen) mit zwei Detektoren in einem bestimmten Abstand nachwiesen. Dabei beobachteten sie zum ersten Mal das für bosonische Teilchen charakteristische "Bunching", das bevorzugte gemeinsame Auftreten. Die beiden Forscher konnten diese Rauschkorrelationen nutzen, um Informationen über Eigenschaften der Lichtquelle, in diesem Fall zum Beispiel den Durchmesser weit entfernter Sterne, zu erhalten.

Fünfzig Jahre später gelingt bei dem Mainzer Experiment das Pendant mit der erstmaligen Beobachtung von fermionischem Anti-Bunching an nicht wechselwirkenden Atomen. Wird ein fermionisches Atom an einem Ort nachgewiesen, so kann in bestimmten Abständen kein weiteres Atom nachgewiesen werden. Diese Abstände sind durch die ursprüngliche regelmäßige Anordnung der Atome im Lichtkristall bestimmt. Mit der Beobachtung dieses fundamentalen Quanteneffektes demonstrieren die Mainzer Wissenschaftler eine Methode, die zukünftig für den Nachweis komplexerer Ordnungen der Atome eingesetzt werden kann. So können unter anderem Zustände untersucht werden, die als Schlüssel zur Hochtemperatur-Supraleitung diskutiert werden.

Kontakt und Informationen:
Univ.-Prof. Immanuel Bloch
Institut für Physik
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-26234
Fax +49 6131 39-25179
E-Mail: bloch@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de

Weitere Berichte zu: Atom Quantenrauschen Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics