Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kaffeesatzlesen im Quantenrauschen

08.12.2006
Physiker der Universität Mainz gewinnen Informationen aus den zufälligen Mustern in Atomwolken und können damit einen fundamentalen Effekt der Quantenphysik erstmals an Atomen nachweisen.

Störendes Rauschen umgibt uns alltäglich in unserer Umwelt. So tritt es zum Beispiel bei schlechtem Handyempfang oder beim Flimmern des Fernsehers auf. In technischen Anwendungen versucht man dieses Rauschen so weit wie möglich zu vermeiden.

Doch selbst wenn alle Störeinflüsse beseitigt sind, verbleibt nach den Gesetzen der Quantenphysik ein gewisses Quantenrauschen, das prinzipiell nicht umgangen werden kann. Physiker der Johannes Gutenberg-Universität Mainz konnten dieses Quantenrauschen in ultrakalten atomaren Gaswolken nun nutzbar machen und zeigen, dass subtile Verbindungen in diesem Rauschen bestehen können, aus denen sich Informationen über einen früheren Zustand perfekter Ordnung der Atome gewinnen lassen. Die Ergebnisse der Mainzer Forscher werden in der aktuellen Ausgabe des renommierten Wissenschaftsmagazins Nature vorgestellt.

Die Forschungsergebnisse eröffnen den Physikern der Arbeitsgruppe von Prof. Immanuel Bloch einen neuen Weg, komplexe quantenmechanische Systeme aus vielen Teilchen zu untersuchen. Ein tieferes Verständnis dieser Systeme kann unter anderem dazu beitragen, die Rätsel der Hochtemperatur-Supraleitung zu lösen.

... mehr zu:
»Atom »Quantenrauschen »Teilchen

Die Forscher nutzen dabei das in vielen Bereichen eingesetzte Verfahren der Korrelationsanalyse. In den Wirtschaftswissenschaften werden beispielsweise Aktienkurse verschiedener Zeiten miteinander in Beziehung gesetzt, um Trends zu erkennen und Vorhersagen zu treffen. Der Kurs einer einzelnen Aktie hängt dabei von vielen unterschiedlichen Faktoren ab, von denen die meisten für jede Aktie spezifisch sind. Werden jedoch Korrelationen - also ähnliche Entwicklungen - zwischen den Kursen unterschiedlicher Aktien nachgewiesen, so kann dies auf "versteckte" gemeinsame Faktoren, zum Beispiel steigende Rohstoffpreise, hinweisen. Statt Beziehungen zwischen Aktienwerten analysieren die Mainzer Forscher - basierend auf einem Vorschlag von Physikern der Harvard University - das Quantenrauschen in Bildern atomarer Gaswolken und konnten damit Informationen über den ursprünglichen Zustand der Atome gewinnen.

Für ihr Experiment kühlen die Mainzer Wissenschaftler dünne Wolken fermionischer Atome auf extrem niedrige Temperaturen knapp über dem absoluten Nullpunkt, der bei etwa minus 273 Grad Celsius liegt, ab. Anschließend werden die Teilchen in einen künstlichen Kristall aus Licht transferiert, welcher durch die geschickte Überlagerung mehrerer Laserstrahlen erzeugt wird. Für die Atome bildet der Lichtkristall eine regelmäßige Anordnung mikroskopischer Töpfchen, in denen sie gefangen werden. Aufgrund ihrer niedrigen Temperatur streben die Atome in den Bereich kleinster potentieller Energie im Zentrum des Kristalls. Da es sich bei den Teilchen um "individualistische" Fermionen handelt, kann jedes "Potentialtöpfchen" nur ein Atom aufnehmen. Dieses Verhalten ist allein auf das Pauli-Prinzip - eine fundamentale Quanteneigenschaft - zurückzuführen. Als Konsequenz reihen sich die Atome entlang der Kristallachsen wie an Perlenschnüren auf und bilden eine perfekt geordnete mikroskopische Struktur.

Sobald das Laserlicht abrupt abgeschaltet wird, löst sich der Kristall auf und die Atome können sich frei im Raum ausbreiten. Durch die individuelle Bewegung der einzelnen Atome geht ihre ursprüngliche Ordnung verloren. Nach einer kurzen Zeit hat sich die Atomwolke soweit ausgedehnt, dass sie photographiert werden kann. Die Korrelationen innerhalb des Rauschens hängen nun entscheidend von der Natur der Teilchen ab.

In der Quantenphysik unterscheidet man zwischen zwei Klassen von Teilchen: Bosonen und Fermionen. Die Teilchen aus den jeweiligen Klassen weisen ein fundamental unterschiedliches "Sozialverhalten" auf. Während Bosonen geselliger Natur sind und sich bevorzugt am selben Ort aufhalten, sind Fermionen strikte Einzelgänger. Sie folgen dabei dem Pauli-Prinzip, welches eine mehrfache Besetzung desselben Quantenzustandes durch identische Teilchen verbietet. So sind zum Beispiel die Elektronen in der Hülle eines Atoms fermionische Teilchen. Wie die untersten Sprossen einer Leiter werden daher die niedrigsten Umlaufbahnen in der Hülle des Atoms von jeweils nur einem Elektron besetzt. Insbesondere erklärt sich aus diesem Prinzip, warum Materie nicht einfach in sich zusammenstürzt. Neben den fermionischen Grundbausteinen des Atoms (Elektronen und Nukleonen) kann auch das Atom selbst als zusammengesetztes Teilchen wiederum ein Fermion sein.

Im Jahr 1956 führten die Pioniere der Quantenoptik Robert Hanbury Brown und Richard Twiss ein Aufsehen erregendes Experiment durch, in welchem sie Korrelationen zwischen Photonen (Lichtteilchen) mit zwei Detektoren in einem bestimmten Abstand nachwiesen. Dabei beobachteten sie zum ersten Mal das für bosonische Teilchen charakteristische "Bunching", das bevorzugte gemeinsame Auftreten. Die beiden Forscher konnten diese Rauschkorrelationen nutzen, um Informationen über Eigenschaften der Lichtquelle, in diesem Fall zum Beispiel den Durchmesser weit entfernter Sterne, zu erhalten.

Fünfzig Jahre später gelingt bei dem Mainzer Experiment das Pendant mit der erstmaligen Beobachtung von fermionischem Anti-Bunching an nicht wechselwirkenden Atomen. Wird ein fermionisches Atom an einem Ort nachgewiesen, so kann in bestimmten Abständen kein weiteres Atom nachgewiesen werden. Diese Abstände sind durch die ursprüngliche regelmäßige Anordnung der Atome im Lichtkristall bestimmt. Mit der Beobachtung dieses fundamentalen Quanteneffektes demonstrieren die Mainzer Wissenschaftler eine Methode, die zukünftig für den Nachweis komplexerer Ordnungen der Atome eingesetzt werden kann. So können unter anderem Zustände untersucht werden, die als Schlüssel zur Hochtemperatur-Supraleitung diskutiert werden.

Kontakt und Informationen:
Univ.-Prof. Immanuel Bloch
Institut für Physik
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-26234
Fax +49 6131 39-25179
E-Mail: bloch@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de

Weitere Berichte zu: Atom Quantenrauschen Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wuppertaler Forscher messen vom Weltraum aus die Temperatur der oberen Atmosphäre
18.01.2019 | Bergische Universität Wuppertal

nachricht Wie Moleküle im Laserfeld wippen
17.01.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zeitwirtschafts- und Einsatzplanungsprozesse effizient und transparent gestalten mit dem Workforce Management System der GFOS

18.01.2019 | Unternehmensmeldung

Der Schlaue Klaus erlaubt keine Fehler

18.01.2019 | Informationstechnologie

Neues Verfahren zur Grundwassersanierung: Mit Eisenoxid gegen hochgiftige Stoffe

18.01.2019 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics