Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Schwarze Löcher ihren Hunger stillen

05.12.2006
Bei der Entstehung von Sternen und Planetensystemen, aber auch bei der Bildung Schwarzer Löcher im Zentrum von Galaxien, spielt ein außergewöhnlicher magnetischer Effekt eine entscheidende Rolle. Er wird Magneto-Rotations-Instabilität genannt. Erstmalig konnte dieser grundlegende Effekt jetzt in dem Laborexperiment PROMISE im Forschungszentrum Dresden-Rossendorf nachgewiesen werden. Die Ergebnisse wurden vor kurzem in "Physical Review Letters" veröffentlicht.

Wer kennt es nicht, das Bild vom gefräßigen Schwarzen Loch, das alles um sich herum verschlingt und nichts entkommen lässt, nicht einmal Licht. Bei genauerem Hinsehen merkt man allerdings, dass es gar nicht so einfach ist, ein Schwarzes Loch zu füttern. Die Gasscheiben, die sich in der Umgebung Schwarzer Löcher gebildet haben und um diese rotieren wie die Erde um die Sonne, werden in der Astrophysik Akkretionsscheiben genannt.

Genauso wenig, wie etwa die Erde in die Sonne stürzt, kann die um das Schwarze Loch kreisende Materie von diesem einfach so aufgesaugt werden. Nur wenn die Materieteilchen abgebremst werden, reicht die Fliehkraft nicht mehr aus, um die Teilchen auf ihren Kreisbahnen zu halten, und sie stürzen in das Schwarze Loch. Wie wird die Materie in der Akkretionsscheibe aber abgebremst? Dieses Problem stellt sich nicht nur bei Schwarzen Löchern, sondern auch bei der Entstehung ganz normaler Sterne, deren Planetensysteme ebenfalls aus Akkretionsscheiben entstehen, und ist somit von fundamentaler Bedeutung für die kosmische Strukturbildung.

Die Lösung besteht in der so genannten Magneto-Rotations-Instabilität (MRI), deren Bedeutung für die Astrophysik 1991 von den Wissenschaftlern Balbus und Hawley theoretisch vorausgesagt wurde. Sie konnten mathematisch zeigen, dass stabile Akkretionsscheiben durch Magnetfelder destabilisiert werden können. Erst durch diesen Prozess wird Massenkonzentration in Sternen und Schwarzen Löchern überhaupt möglich.

Entstehung von Sternen im Labor simuliert

Seit etwa fünf Jahren gibt es weltweite Bestrebungen, diesen für die kosmische Strukturbildung so fundamentalen Prozess im Laborexperiment nachzuweisen. Kürzliche Arbeiten von amerikanischen und französischen Wissenschaftlern im Journal "NATURE" vom 16.11.2006 unterstreichen, dass Turbulenz in Akkretionsscheiben nur durch die Magnetfeldwirkung möglich ist, ein experimenteller Nachweis dieses Mechanismus aber bisher ausstand. Im Forschungszentrum Dresden-Rossendorf (FZD) wurde nun gemeinsam von Dresdner Physikern und Wissenschaftlern vom Astrophysikalischen Institut Potsdam (API) das Experiment PROMISE zum Nachweis der Magneto-Rotations-Instabilität aufgebaut und erfolgreich durchgeführt. PROMISE steht für Potsdam ROssendorf Magnetic InStability Experiment. Es verblüfft durch einfache Komponenten wie etwa ein Abwasserrohr aus dem Baumarkt. In diesem Rohr, auf das die Spule zur Erzeugung des axialen Magnetfeldes gewickelt ist, finden zwei rotierende Kupferzylinder Platz. Der äußere Zylinder ist doppelt so groß wie der innere, in dem dazwischen liegenden Spalt wird ein Flüssigmetall durch unterschiedliche Drehzahlen von Innen- und Außenzylinder in eine rotierende Bewegung versetzt.

Beträgt die Drehzahl des Außenzylinders mehr als ein Viertel derjenigen des Innenzylinders, ist die Strömung stabil, weist also keine Turbulenzen auf. Mit Hilfe von Ultraschall-Geschwindigkeitssensoren wird dies auch im Experiment beobachtet. Wirklich interessant aber ist die Tatsache, dass die hydrodynamisch stabile Strömung unter dem Einfluss eines extern angelegten, schraubenförmigen Magnetfeldes destabilisiert und somit turbulent wird, was zum effektiven Abbremsen der Strömung führt. Mit diesem Versuchsaufbau konnte erstmalig die Magneto-Rotations-Instabilität (MRI) im Laborexperiment nachgewiesen werden.

Das Bild zeigt das raum-zeitliche Verhalten der gemessenen vertikalen Strömungsgeschwindigkeit für drei verschiedene Spulenströme. Dabei wird das ringförmige Magnetfeld durch einen konstanten axialen Strom von 6000 Ampere erzeugt, während der Spulenstrom und damit das vertikale Magnetfeld variiert werden. In guter Übereinstimmung mit der Theorie sieht man eine nach oben wandernde Welle nur in einem bestimmten Bereich des Spulenstromes. In der Tat stimmt nicht nur das Fenster der Instabilität, sondern auch die Frequenzabhängigkeit der wandernden Welle gut mit der numerischen Prognose überein.

Die Ergebnisse wurden jüngst in den Zeitschriften "Physical Review Letters" und "Astrophysical Journal Letters" veröffentlicht.

Veröffentlichungen:
Stefani, F., Gundrum, Th., Gerbeth, G., Rüdiger, G., Schultz, M., Szklarski, J., Hollerbach, R., Experimental evidence for magnetorotational instability in a Taylor-Couette flow under the influence of a helical magnetic field,

Phys. Rev. Letters, Vol. 97, Art. No 184502 (2006).

Rüdiger, G., Hollerbach, R., Stefani, F., Gundrum, Th., Gerbeth, G., Rosner, R.,
The traveling wave MRI in cylindrical Taylor-Couette flow: comparing wavelengths and speeds in theory and experiment,

Astrophys. J. Lett., Vol. 649, L145-L147 (2006)

Weitere Informationen:
Dr. Gunter Gerbeth
Forschungszentrum Rossendorf, Institut für Sicherheitsforschung
Tel.: 0351 260 - 3484
g.gerbeth@fz-rossendorf.de
Prof. Günther Rüdiger
Astrophysikalisches Institut Potsdam
Tel.: 0331 7499 - 512
gruediger@aip.de
Pressekontakt:
Dr. Christine Bohnet - Forschungszentrum Rossendorf (FZR)
Tel.: 0351 260 - 2450 oder 0160 969 288 56
c.bohnet@fz-rossendorf.de
Shehan Bonatz - Astrophysikalisches Institut Potsdam (API)
Tel.: 0331 7499 - 469
presse@aip.de
Information:
Das FZD erbringt wesentliche Beiträge der Grundlagenforschung sowie der anwendungsorientierten Forschung und Entwicklung zu folgenden Fragestellungen:

o Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?

o Wie können Tumor- und Stoffwechselerkrankungen frühzeitig erkannt und wirksam behandelt werden?

o Wie schützt man Mensch und Umwelt vor technischen Risiken?

Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten.

Das FZD ist mit ca. 650 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 54 Mill. Euro. Hinzu kommen etwa 7 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute hatten 2004 ein Budget von 1,1 Milliarden Euro und beschäftigten rund 13.000 Mitarbeiter (Stand 1.1.2005).

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de

Weitere Berichte zu: FZD MRI Magnetfeld Magneto-Rotations-Instabilität PROMISE

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics