Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord: Elastizitätsmodul-Messung an 4,3 Nanometer dünnen Schicht geglückt

31.01.2002


Die zärtliche Berührung eines winzigen Diamanten
Weltrekord: Elastizitätsmodul-Messung an 4,3 Nanometer dünnen Schicht geglückt

Ultradünne Schichten mit Dicken von einigen zehn bis hundert Nanometern (das sind Millionstel Millimeter) werden in der Technik immer wichtiger: Sie sorgen als Isolatoren in Computerchips dafür, dass künftige Computerprozessoren noch kleiner und leistungsfähiger werden, sie machen Werkzeuge haltbarer oder vergüten Fotoobjektive. Die mechanischen Eigenschaften dieser Schichten, die wesentlich die Qualität der Bauteile bestimmen, ließen sich jedoch bisher nur schwer feststellen. Die Messmethoden waren dazu nicht empfindlich genug. Deshalb war es bislang auch nicht möglich, Schichtsysteme mit ganz speziellen mechanischen Eigenschaften optimiert für den jeweiligen Anwendungsfall herzustellen.

Den Wissenschaftlern Dr. Thomas Chudoba und Dr. Norbert Schwarzer, beide sind Mitarbeiter am Institut für Physik der TU Chemnitz (Professuren Technische Physik (Prof. Dr. Günther Hecht) und Physik fester Körper (Prof. Dr. Frank Richter)), ist es nun erstmals gelungen, mit einem neuartigen Messverfahren den Elastizitätsmodul an Schichten mit Dicken bis unter zehn Nanometern zu messen. Das Verfahren beschreibt Dr. Chudoba so: "Ein kugelförmiger Eindruckkörper aus einem winzig kleinen Diamanten mit einem Radius von einigen Tausend Nanometer dringt elastisch in die Oberfläche ein. Sowohl die Kraft als auch die Deformation kann so mit hoher Genauigkeit gemessen werden". Dieser Diamant wird mit einer Kraft von teilweise weniger als einem Tausendstel Newton in die oft nur wenige hundert Nanometer dicke Oberflächenschicht eingedrückt, die untersucht werden soll. Die Verformung ist dabei von der aufgewandten Kraft abhängig.

Bisher wurden bei dieser so genannten Indenter-Methode vorrangig pyramidenförmige Spitzen (Berkovich-Indenter) verwendet. Genaue Elastizitätsmodul-Messungen an Schichten mit Dicken unterhalb von 200 Nanometern sind damit jedoch bisher nicht möglich gewesen, da der negative Einfluss des Substrates auf das Ergebnis nicht eliminiert werden kann. Das ist nun mit der neuen Untersuchungsmethode unter Nutzung kugelförmiger Spitzen gelungen: Vor wenigen Wochen wurde von Dr. Chudoba als bisheriger Weltrekord der Elastizitätsmodul an einer nur 4,3 Nanometer dünnen DLC-Schicht (DLC = diamond like carbon, diamantähnlicher Kohlenstoff) auf einem Siliziumsubstrat gemessen. Zum Vergleich: Ein menschliches Haar ist etwa 15.000-mal dicker.

Die Chemnitzer Messergebnisse wurden mit denen der einzigen alternativen Methode verglichen, die am Fraunhofer Institut für Werkstoffforschung und Strahlentechnologie IWS Dresden entwickelt wurde und bei der Ultraschall-Oberflächenwellen für die Messung genutzt werden. "Die Werte stimmen im Rahmen der Fehlergrenzen beider Methoden hervorragend überein. Das ist insofern von Bedeutung, als es bisher keinen Standard für solch dünne Schichten gibt und keine Aussage darüber möglich war, welche Methode richtige Ergebnisse liefert", versichert Dr. Chudoba. Da die Indenter-Methode neben dem Elastizitätsmodul beispielsweise auch die Fließgrenze - eine charakteristische Spannung, bei der gerade der Übergang von rein elastischer zu plastischer Deformation erfolgt - ermitteln kann, eröffnen sich durch die Chemnitzer Ergebnisse neue Perspektiven für die Messung mechanischer Eigenschaften ultradünner Schichten.

Von den Chemnitzer Forschungsergebnissen profitiert auch das Kompetenzzentrum "Ultradünne funktionale Schichten", das als eines von mehreren Kompetenzzentren vom Bundesministerium für Bildung und Forschung gefördert wird. Es wird vom Fraunhofer IWS Dresden koordiniert. 38 Unternehmen, 14 Hochschulinstitute - so auch das Chemnitzer Institut für Physik -, 19 Forschungseinrichtungen und sechs Verbände haben sich 1998 darin zu einem Netzwerk zusammengeschlossen.

Weitere Informationen erteilt Dr. Thomas Chudoba, Telefon (03 71) 5 31 - 31 15, E-Mail  t.chudoba@physik.tu-chemnitz.de .

Dipl.-Ing. Mario Steinebach | idw
Weitere Informationen:
http://www.tu-chemnitz.de/physik/TPH/

Weitere Berichte zu: Chudoba Elastizitätsmodul-Messung Nanometer Schicht

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics