Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord: Elastizitätsmodul-Messung an 4,3 Nanometer dünnen Schicht geglückt

31.01.2002


Die zärtliche Berührung eines winzigen Diamanten
Weltrekord: Elastizitätsmodul-Messung an 4,3 Nanometer dünnen Schicht geglückt

Ultradünne Schichten mit Dicken von einigen zehn bis hundert Nanometern (das sind Millionstel Millimeter) werden in der Technik immer wichtiger: Sie sorgen als Isolatoren in Computerchips dafür, dass künftige Computerprozessoren noch kleiner und leistungsfähiger werden, sie machen Werkzeuge haltbarer oder vergüten Fotoobjektive. Die mechanischen Eigenschaften dieser Schichten, die wesentlich die Qualität der Bauteile bestimmen, ließen sich jedoch bisher nur schwer feststellen. Die Messmethoden waren dazu nicht empfindlich genug. Deshalb war es bislang auch nicht möglich, Schichtsysteme mit ganz speziellen mechanischen Eigenschaften optimiert für den jeweiligen Anwendungsfall herzustellen.

Den Wissenschaftlern Dr. Thomas Chudoba und Dr. Norbert Schwarzer, beide sind Mitarbeiter am Institut für Physik der TU Chemnitz (Professuren Technische Physik (Prof. Dr. Günther Hecht) und Physik fester Körper (Prof. Dr. Frank Richter)), ist es nun erstmals gelungen, mit einem neuartigen Messverfahren den Elastizitätsmodul an Schichten mit Dicken bis unter zehn Nanometern zu messen. Das Verfahren beschreibt Dr. Chudoba so: "Ein kugelförmiger Eindruckkörper aus einem winzig kleinen Diamanten mit einem Radius von einigen Tausend Nanometer dringt elastisch in die Oberfläche ein. Sowohl die Kraft als auch die Deformation kann so mit hoher Genauigkeit gemessen werden". Dieser Diamant wird mit einer Kraft von teilweise weniger als einem Tausendstel Newton in die oft nur wenige hundert Nanometer dicke Oberflächenschicht eingedrückt, die untersucht werden soll. Die Verformung ist dabei von der aufgewandten Kraft abhängig.

Bisher wurden bei dieser so genannten Indenter-Methode vorrangig pyramidenförmige Spitzen (Berkovich-Indenter) verwendet. Genaue Elastizitätsmodul-Messungen an Schichten mit Dicken unterhalb von 200 Nanometern sind damit jedoch bisher nicht möglich gewesen, da der negative Einfluss des Substrates auf das Ergebnis nicht eliminiert werden kann. Das ist nun mit der neuen Untersuchungsmethode unter Nutzung kugelförmiger Spitzen gelungen: Vor wenigen Wochen wurde von Dr. Chudoba als bisheriger Weltrekord der Elastizitätsmodul an einer nur 4,3 Nanometer dünnen DLC-Schicht (DLC = diamond like carbon, diamantähnlicher Kohlenstoff) auf einem Siliziumsubstrat gemessen. Zum Vergleich: Ein menschliches Haar ist etwa 15.000-mal dicker.

Die Chemnitzer Messergebnisse wurden mit denen der einzigen alternativen Methode verglichen, die am Fraunhofer Institut für Werkstoffforschung und Strahlentechnologie IWS Dresden entwickelt wurde und bei der Ultraschall-Oberflächenwellen für die Messung genutzt werden. "Die Werte stimmen im Rahmen der Fehlergrenzen beider Methoden hervorragend überein. Das ist insofern von Bedeutung, als es bisher keinen Standard für solch dünne Schichten gibt und keine Aussage darüber möglich war, welche Methode richtige Ergebnisse liefert", versichert Dr. Chudoba. Da die Indenter-Methode neben dem Elastizitätsmodul beispielsweise auch die Fließgrenze - eine charakteristische Spannung, bei der gerade der Übergang von rein elastischer zu plastischer Deformation erfolgt - ermitteln kann, eröffnen sich durch die Chemnitzer Ergebnisse neue Perspektiven für die Messung mechanischer Eigenschaften ultradünner Schichten.

Von den Chemnitzer Forschungsergebnissen profitiert auch das Kompetenzzentrum "Ultradünne funktionale Schichten", das als eines von mehreren Kompetenzzentren vom Bundesministerium für Bildung und Forschung gefördert wird. Es wird vom Fraunhofer IWS Dresden koordiniert. 38 Unternehmen, 14 Hochschulinstitute - so auch das Chemnitzer Institut für Physik -, 19 Forschungseinrichtungen und sechs Verbände haben sich 1998 darin zu einem Netzwerk zusammengeschlossen.

Weitere Informationen erteilt Dr. Thomas Chudoba, Telefon (03 71) 5 31 - 31 15, E-Mail  t.chudoba@physik.tu-chemnitz.de .

Dipl.-Ing. Mario Steinebach | idw
Weitere Informationen:
http://www.tu-chemnitz.de/physik/TPH/

Weitere Berichte zu: Chudoba Elastizitätsmodul-Messung Nanometer Schicht

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Supercomputer ohne Abwärme
07.12.2018 | Universität Konstanz

nachricht Eisenreiche Scheibchen im Halbleiter: HZDR-Forscher erzeugen ungewöhnliche Kristallstruktur
07.12.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer

Quantencomputer sollen bestimmte Rechenprobleme einmal sehr viel schneller lösen können als ein klassischer Computer. Einer der vielversprechendsten Ansätze...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Großes Interesse an erster Fachtagung

07.12.2018 | Veranstaltungen

Entwicklung eines Amphibienflugzeugs

04.12.2018 | Veranstaltungen

Neue biologische Verfahren im Trink- und Grundwassermanagement

04.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erstmalig in Deutschland: Erfolgreiche Bestrahlungstherapie lebensbedrohlicher Herzrhythmusstörung

07.12.2018 | Medizintechnik

Nicht zu warm und nicht zu kalt! Seminar „Thermomanagement von Lithium-Ionen-Batterien“ am 02.04.2019 in Aachen

07.12.2018 | Seminare Workshops

Seminar „Magnettechnik - Magnetwerkstoffe“ vom 19. – 20.02.2019 in Essen

07.12.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics