Chamäleons der Physik

Vor etwa 400 Jahren wurde Galileo Galilei angeblich durch den Schiefen Turm von Pisa dazu inspiriert, sich Gedanken über die Schwerkraft zu machen. Er ließ verschiedene Gegenstände aus Holz, Blei und Gold aus größerer Höhe zu Boden fallen und erkannte, dass alle Materialien unter dem Einfluss der Schwerkraft gleich schnell in Richtung Erdboden fallen. 300 Jahre später entwickelte Einstein das so genannte Äquivalenz-Prinzip, das nichts anderes aussagt, als das sich in einem Gravitationsfeld alle Körper unabhängig von ihrer Zusammensetzung gleich bewegen.

Immer wieder haben Wissenschaftler versucht das Äquivalenz-Prinzip in Experimenten zu überprüfen, dabei wurden in den letzten Jahren immer exaktere Methoden entwickelt. Zur Zeit wird eine Genauigkeit von etwa 10-13 Meter pro Sekunde bei der Messung der Bewegung der Untersuchungsobjekte erreicht. In all diesen Experimenten wurde das Äquivalenz-Prinzip bestätigt. Trotzdem vermuten Wissenschaftler, dass dieses Prinzip nicht länger haltbar ist. Noch ausgeklügeltere Experimente sind in Vorbereitung, wie etwa STEP, einem gemeinsamen Programm von Europäern und US-Amerikanern, bei dem das Äquivalenz-Prinzip mit Hilfe eines Satelliten im erdnahen Orbit überprüft werden soll. Dabei soll eine Genauigkeit der Messung von 10-18 Meter pro Sekunde erzielt werden.

Wird diese Messgenauigkeit aber ausreichen, um das Äquivalenz-Prinzip zu widerlegen? Dr. David Mota vom Institut für Theoretische Physik der Ruprecht-Karls Universität Heidelberg bezweifelt es. Zusammen mit seinem englischen Kollegen Douglas Shaw hat er dieser Tage einen Artikel veröffentlicht (David F. Mota & Douglas J. Shaw: Strongly coupled chameleon fields: New horizons in scalar field theory. Phys. Rev. Lett., Vol. 97, No. 15) in dem die beiden Physiker zeigen, dass es wahrscheinlich viel komplizierter wird das Einsteinsche Prinzip zu widerlegen, als bisher angenommen. Hintergrund dieser Überlegungen ist die so genannte String-Theorie, nach der es Teilchen gibt, die mit der normalen Materie in Wechselwirkung treten. Da diese Teilchen noch nicht nachgewiesen sind, wird angenommen, dass deren Wechselwirkung mit der normalen Materie besonders schwach sei.

David Mota und Douglas Shaw zeigten jedoch, dass diese Teilchen besonders stark mit Materie in Wechselwirkung treten könnten. „Dabei verhalten sie sich wie ein Chamäleon und gleichen sich ihrer Umgebung an“, erläutert der Physiker Mota. Gleichzeitig würden die Teilchen auch die Bewegung mit der ein Gegenstand im luftleeren Raum zu Boden fällt verändern. Damit wären sie für die Verletzung des Äquivalenz-Prinzips verantwortlich. Bis aber eines der fundamentalen Prinzipien der heutigen Physik widerlegt ist, kann es noch etwas dauern, denn wie Chamäleons sind diese bisher unbekannten Teilchen nur schwer zu erkennen.

Stefan Zeeh

Rückfragen bitte an:
Dr. David F. Mota
Institut für Theoretische Physik
Philosophenweg 16
69120 Heidelberg
Tel. 06221 549425
D.Mota@thphys.uni-heidelberg.de
Allgemeine Rückfragen von Journalisten auch an:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de
Irene Thewalt
Tel. 06221 542311, Fax 542317
presse@rektorat.uni-heidelberg.de

Media Contact

Dr. Michael Schwarz idw

Weitere Informationen:

http://www.uni-heidelberg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer