Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenteleportation zwischen Licht und Materie

05.10.2006
Das Konzept der Quantenteleportation - der "spukhaften" vollständigen Übertragung des Zu-standes eines Quantensystems an einen beliebigen anderen Ort - wurde experimentell zunächst zwischen zwei verschiedenen Lichtstrahlen verwirklicht. Später gelang es auch, die Eigenschaften eines gespeicherten Ions auf ein anderes gleichartiges Objekt zu übertragen.

Ein Team von Wissenschaftlern um Prof. Ignacio Cirac am MPQ sowie um Prof. Eugene Polzik am Niels-Bohr-Institut in Kopenhagen hat jetzt gezeigt, dass die Quantenzustände eines Lichtpulses auch auf ein makroskopisches Objekt, ein Ensemble aus 1012 Atomen, transferiert werden können. (Nature, 4. Oktober 2006). Damit ist erstmals die Teleportation zwischen Objekten unterschiedlicher Natur gelungen, die einerseits "fliegende" (Licht) bzw. "stationäre" Medien (Atome) rep-räsentieren. Das hier vorgestellte Ergebnis ist nicht nur für die Grundlagenforschung interessant, sondern vor allem auch für die praktische Anwendung bei der Realisierung von Quanten-Computern oder der Übermittlung verschlüsselter Daten (Quantenkryptographie).

Seit Beginn der 90er Jahre hat die Erforschung der Quantenteleportation bei theoretischen und experimentellen Physikern Hochkonjunktur. Bei der Übermittlung von Quanteninformationen tritt ein grundsätzliches Problem auf: Nach der Heisenbergschen Unschärferelation lassen sich zwei komplementäre Eigenschaften eines Quantenteilchen - etwa Ort und Impuls - nicht gleichzeitig präzise mes-sen. Die gesamte Information des Systems muss also übertragen werden, ohne dass man sie vollstän-dig kennt. Doch die Natur der Teilchen hält auch die Lösung für dieses Problem bereit: Sie liegt in der Möglichkeit, zwei Teilchen miteinander so zu "verschränken", dass deren Eigenschaften perfekt korre-liert sind. Misst man eine bestimmte Eigenschaft an einem der "Zwillingsteilchen", so ist damit die entsprechende Eigenschaft des anderen automatisch und mit sofortiger Wirkung festgelegt.

Mit Hilfe verschränkter Teilchen lässt sich eine erfolgreiche Quantenteleportation in etwa folgender-maßen durchführen: Man erzeugt ein Hilfspaar von miteinander verschränkten Teilchen, die jeweils an "Alice" bzw. "Bob" verschickt werden. (Die Bezeichnungen "Alice" und "Bob" haben sich eingebür-gert, um das Versenden von Quanteninformationen von A nach B zu beschreiben). Alice verschränkt nun das Objekt, das sie teleportieren will, mit einem der Hilfsteilchen, und misst anschließend den gemeinsamen Zustand (Bell Messung). Das Ergebnis schickt sie auf klassischem Weg an Bob. Der wendet es auf sein Hilfsteilchen an und "zaubert" daraus - das Teleportationsobjekt.

Handelt es sich bei solchen "Gebrauchsanleitungen" um bloße Gedankenspiele? Die große Herausfor-derung für theoretische Physiker besteht darin, Konzepte auszuarbeiten, die sich auch in die Praxis umsetzen lassen. Das hier beschriebene Experiment, das von einem Forscherteam um Prof. Eugene Polzik am Niels-Bohr-Institut in Kopenhagen durchgeführt wurde, geht auf einen Vorschlag von Prof. Ignacio Cirac, geschäftsführender Direktor am MPQ, und seinem Mitarbeiter Dr. Klemens Hammerer (damals ebenfalls MPQ, seit kurzem Universität Innsbruck) zurück.

Zunächst wird das "Zwillings-Pärchen" erzeugt, indem ein starker Lichtpuls auf ein mit Cäsiumgas (etwa 1012 Atome) gefülltes Glasröhrchen geschickt wird. Die magnetischen Momente der Gasatome werden in einem homogenen Magnetfeld ausgerichtet. Auch das Licht hat eine Vorzugsrichtung: es ist polarisiert, d.h. das elektrische Feld schwingt nur in einer Richtung. Unter diesen Bedingungen treten Licht und Atome miteinander in Wechselwirkung, so dass der nach dem Gang durch das Gas austre-tende Lichtpuls, der an Alice geschickt wird, mit dem Ensemble von 1012 Cäsiumatomen, das sich bei Bobs Aufenthaltsort befindet, "verschränkt" ist.

Alice mischt den ankommenden Puls mit Hilfe eines Strahlteilers mit dem Objekt, das sie teleportieren will: einem schwachen, nur wenige Photonen enthaltenden Lichtpuls. Die resultierenden Lichtpulse an den beiden Ausgängen des Strahlteilers werden mit Photodetektoren gemessen, und die Messergebnis-se werden an Bob gesandt.

Aufgrund der Messergebnisse weiß Bob, was zu tun ist, um die Teleportation abzuschließen und die ausgewählten Quantenzustände des Lichtpulses, Amplitude und Phase, auf das atomare Ensemble zu übertragen. Dazu legt er ein niederfrequentes Magnetfeld an, das den kollektiven Spin (Eigendrehim-puls) des Systems zum Schwingen bringt. Dieser Vorgang lässt sich vergleichen mit der Präzession eines Kreisels um seine Hauptachse: Die Auslenkung des Kreisels korrespondiert mit der Amplitude des Lichtes, während der Nulldurchgang der Phase entspricht.

Um nachzuweisen, dass die Teleportation erfolgreich war, wird nach 0,1 Millisekunden ein zweiter starker Puls polarisiertes Licht auf das atomare Ensemble geschickt, der dessen Zustand gewissermaßen "ausliest". Aus diesen Messwerten können die theoretischen Physiker die so genannte "Fidelity" berechnen, eine Gütezahl, die angibt, wie gut der Zustand des teleportierten Objektes mit dem Original übereinstimmt. (Eine Gütezahl von 1 entspricht einer perfekten Übertragung, während der Wert Null bedeutet, dass gar keine Übertragung statt gefunden hat.). Im vorliegenden Experiment beträgt die Gütezahl 0,6 und liegt damit deutlich über dem Wert von 0,5, der bestenfalls auf klassischem Weg, z.B. durch Übermittlung der Messwerte per Telefon, ohne Beteiligung von verschränkten Teilchen, zu erreichen wäre.

Anders, als es der geläufigen Vorstellung von "Beamen" entspricht, ist hier nicht ein Teilchen von einem Platz verschwunden und an einem anderen Platz wieder aufgetaucht. "Es geht bei der Quantenteleportation um Kommunikationsmethoden mit Anwendung in der Quantenkryptographie, der Ver-schlüsslung von Daten, und nicht um neuartige Verkehrswege", betont Dr. Klemens Hammerer. "Die Bedeutung des Experimentes liegt darin, dass erstmals eine Teleportation zwischen Atomen, die stati-onäre Quantenspeicher darstellen, und Licht, das man für die Übertragung von Informationen über weite Strecken braucht, gelungen ist. Damit ist ein wichtiger Schritt getan, Quantenkryptographie, d.h. absolut sichere Kommunikation über lange Distanzen, etwa zwischen München und Kopenhagen, zu ermöglichen." [O.M.]

Kontakt:
Prof. Dr. Ignacio Cirac
Lehrstuhl für Physik, TU München
Geschäftsführender Direktor am Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 705 / 736
Fax: +49 - 89 / 32905 336
E-Mail: ignacio.cirac@mpq.mpg.de
www.mpq.mpg.de/cirac
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik,
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Berichte zu: Lichtpuls Quantenteleportation Teleportation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics