Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekülbremse eröffnet neue Einblicke in die Quantenwelt

15.09.2006
Forscher des Berliner Fritz-Haber-Instituts decken bei Stoß-Experimenten mit gezielt abgebremsten Molekülen deren molekulare Quantenstruktur auf

Eine neue Technik, mit der Zusammenstöße zwischen neutralen Molekülen und Atomen bei niedrigen Geschwindigkeiten studiert werden können, haben Wissenschaftler des Fritz-Haber-Instituts der Max-Planck-Gesellschaft entwickelt,. Dieses Experiment enthüllt Details der stoßenden Teilchen und ihrer Wechselwirkungen, die bei "normalen" Geschwindigkeiten verborgen bleiben. Die gewonnenen Daten zeigen eine hohe Übereinstimmung mit dem derzeit exaktesten theoretischen Modell für molekulare Stöße. Die Forschungsergebnisse werden in der internationalen Fachzeitschrift "Science" veröffentlicht (Science, 15. September 2006).


Schematische Darstellung des experimentellen Aufbaus sowie des Energieniveauschemas eines OH-Radikals. Dazu werden OH-Radikale durch einen Stark-Abbremser geleitet. Dieser kann die Molekülgeschwindigkeit präzise zwischen 33 und 700 Meter pro Sekunde einstellen. Verlassen die Radikale den Abbremser, stoßen sie mit Xenon-Atome zusammen. Mit einem Laserstrahl kann man dann die detaillierte Quantenstruktur der OH-Radikale untersuchen. Hierbei zeigt sich, dass die Gesetze der Quantenmechanik nur diskrete rotationelle Energiezustände zulassen. Bild: Fritz-Haber-Institut

Lässt man Teilchen unter kontrollierten Bedingungen zusammenstoßen und misst danach ihre Eigenschaften, erhält man Informationen über ihre Struktur und ihre Wechselwirkungen. Die Geschwindigkeit, mit der die Teilchen aufeinandertreffen, ist hierbei ein entscheidender Parameter. In großen Teilchenbeschleunigern, wie beispielsweise am Europäischen Forschungszentrum CERN, läßt man geladene Teilchen mit sehr hohen Geschwindigkeiten aufeinander prallen und kann diese dadurch in ihre kleinsten Bausteine zerlegen.

Wissenschaftler des Fritz-Haber-Instituts in Berlin haben nun unter Leitung von Prof. Gerard Meijer neue Experimente durchgeführt, bei denen neutrale Moleküle mit sehr niedriger Geschwindigkeit gegen Atome stoßen. Ihre Geschwindigkeit ist so gering, dass die Moleküle weder zerstört werden noch in kleinere Teilchen zerfallen. Solche Stöße machen vielmehr Details der molekularen Quantenstruktur sichtbar, wenn man die Entstehung langlebiger Molekülkomplexe verstehen will.

Denn normalerweise haben neutrale Moleküle hohe Geschwindigkeiten, die sich relativ breit um einen Mittelwert von rund fünfhundert Meter pro Sekunde verteilen. Das ist zu schnell, um bei einem Stoß ihre molekulare Detailstruktur beobachten zu können. Bis vor kurzem war es allerdings auch schwierig, Moleküle entsprechend abbremsen zu können. Das gelang nun mit eine besonderen Molekülbremse, der in den vergangenen Jahren von der Forschungsgruppe "Kalte Moleküle" am FOM-Institut für Plasmaphysik "Rijnhuizen" in Nieuwegein, Niederlande, entwickelt worden war, die ihre Forschung seit Ende 2003 am Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin fortsetzt.

Der Abbremser funktioniert genau gegenteilig zu einem Teilchenbeschleuniger und ermöglicht den Forschern, die Molekülgeschwindigkeiten auf einer Skala zwischen 33 und 700 Meter pro Sekunde genau einzustellen. Zudem haben dann alle Moleküle, die den Abbremser verlassen, in etwa die gleiche Geschwindigkeit bezogen auf den eingestellten Mittelwert.

Um die Wirksamkeit dieser Methode zu demonstrieren, liessen die Forscher OH-Moleküle (ein Radikal, das eine wichtige Rolle in der Chemie der Atmosphäre spielt) auf Xenon-Atome stoßen. In Abhängigkeit von der Stoßenergie können die OH-Moleküle durch den Stoßprozess in Rotation versetzt werden. Die Gesetze der Quantenmechanik schreiben nun vor, dass sich die Drehgeschwindigkeit von Molekülen nur stufenweise erhöhen läßt. Genau dies wurde nun bei den Berliner Experimenten sichtbar. Danach verglichen die Forscher ihre Ergebnisse mit Berechnungen des theoretischen Chemikers Gerrit Groenenboom aus Nijmegen, Niederlande, die . auf Basis der bis dato präzisesten Theorie durchgeführt wurden. Die experimentellen und die rechnerischen Werte zeigten eine hohe Übereinstimmung.

Die neue Technik ermöglicht eine Vielzahl interessanter Versuche. So wollen die Forscher in Zukunft nicht nur Atome und Moleküle, sondern auch Molekül auf Molekül treffen lassen und dabei die Geschwindigkeit beider Stoßpartner präzise variieren. Hierfür sind dann zwei Molekülabbremser erforderlich. Damit kann man die Genauigkeit der Stoßenergie um das Zehnfache erhöhen. Auf diese Weise sollten weitere Details der molekularen Quantenstruktur sichtbar werden.

Doch der Molekülabbremser ermöglicht auch neuartige Experimente auf dem Gebiet der Physikalischen Chemie. Denn steht gerade genug Energie für eine chemische Reaktion zur Verfügung, so dominieren Quanteneffekte das Verhalten der Reaktionspartner. Doch was unter solchen Bedingungen genau passiert, ist noch größtenteils unbekannt. Der Molekülabbremser ist daher ein ideales Instument, um solche Prozesse genauestens zu studieren.

Originalveröffentlichung:

Joop Gilijamse, Steven Hoekstra, Sebastiaan van de Meerakker, Gerrit Groenenboom and Gerard Meijer
Near-threshold inelastic collisions using molecular beams with a tunable velocity

Science, 15 September 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Molekülabbremser Molekülbremse Quantenstruktur

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

nachricht Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?
16.07.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics