Vom Nanodraht zum Nanoröhrchen

Herstellungsweg für Nanoröhren aus Nanodrähten (a). Mit dem Transmissionselektronenmikroskop ist zu sehen, wie sich die Spinell-Nanoröhren nach der thermischen Behandlung von Kern-Hüllen-Nanodrähten aus ZnO und Al2O3 bilden (b, c). Die meisten der erzeugten eindimensionalen Nanostrukturen sind über die gesamte Länge des vorherigen Nanodrahtes hohl. Die Forscher haben freistehende Nanoröhren von bis zu 20 Mikrometer Länge mit Durchmessern von 30 bis 40 Nanometern und Wandstärken von 10 Nanometern erzeugt. Diese zeichnen sich durch eine hervorragende Kristallinität und Gleichmäßigkeit aus. Diese Ergebnisse belegen die allgemeine Anwendbarkeit des Kirkendall-Effekts für die Herstellung von hohlen Nanoobjekten. Bild: Max-Planck-Institut für Mikrostrukturphysik

Für hohle Nanokristalle als hocheffiziente Katalysatoren oder Transportbehälter für Wirkstoffe besteht heute ein großer Bedarf. Wissenschaftler des Max-Planck-Instituts für Mikrostrukturphysik in Halle haben jetzt ein neues Verfahren vorgestellt, mit dem sich Nanoröhren aus chemischen Verbindungen in hoher Qualität und in großer Zahl herstellen lassen. Die Forscher nutzen den bei der Diffusion in Festkörpern auftretenden Kirkendall-Effekt aus, um aus Nanodrähten, die aus einer chemischen Verbindung im Kern und einer anderen Verbindung in der Hülle bestehen, Nanoröhren einer noch komplexeren Verbindung herzustellen. Daneben gelang ihnen auch der Nachweis, dass man mit dieser Methode auch Nanodrähte selbst sehr effizient herstellen kann (Nature Materials, August 2006).

Nanoröhren aus Verbindungsmaterialien können auf ganz verschiedene Weise erzeugt werden – etwa durch Aufrollen von Schichtmaterialien, das Beschichten von Templaten oder das Herauslösen des Kerns aus einem Kern-Hülle-Nanodraht. Doch bei Verbindungsmaterialien, die aus drei Elementen bestehen, zeigen die meisten der bisher verwendeten Methoden Mängel oder Grenzen: Entweder benötigt man geschichtete Materialien oder Template wie poröses Aluminiumoxid, oder die realisierten Nanoröhren haben ein zu kleines Verhältnis von Länge zu Durchmesser. Hinzu kommt, dass die Kristallinität der Nanoröhren bei diesen Methoden unzureichend ist.

Die Wissenschaftler am Max-Planck-Institut für Mikrostrukturphysik haben nun eine neue, universell einsetzbare Technik vorgestellt, mit der man Nanoröhren aus ternären – also aus drei Elementen bestehenden – chemischen Verbindungen herstellen kann. Die Forscher demonstrierten die Methode am Beispiel von ultralangen, einkristallinen ZnAl2O4 Nanoröhren (Durchmesser: ca. 40 Nanometer, Wandstärke: etwa 10 Nanometer).

Diese Nanoröhren werden durch eine Festkörperreaktion erzeugt, die durch einen Diffusionsprozess vermittelt wird, welcher zwischen ZnO (Kern) und Al2O3 (Hülle) stattfindet, und zwar vermittels Leerstellenaustauschs. Leerstellen sind Stellen im Kristallgitter, an denen ein Gitterplatz unbesetzt ist. Der Kirkendall-Effekt, eine bei Diffusion von Leerstellen vorkommende Asymmetrie der auftretenden Diffusionsgeschwindigkeiten, die zur Bildung von Poren führen kann, haben die Forscher hier zum ersten Male gezielt auf eindimensionale Nanostrukturen angewendet. Aufgrund der besonderen geometrischen Randbedingungen, die infolge der Zylindersymmetrie der Nanodrähte gegeben sind, können die sich bildenden Poren den Nanodraht nicht verlassen, so dass sie sich in der Mittelachse anreichern und am Ende einen Hohlraum in Form einer Röhre ergeben. Die Forscher haben auf diese Weise Nanoröhren des Spinells ZnAl2O4 hergestellt. Spinelle sind Verbindungen des Typs AB2O4, die kubisch kristallisieren und vielfältige Anwendungen, z.B. in der Nachrichtentechnik und Katalyse, finden.

Die neue Methode hat im Vergleich zu anderen Techniken den Vorteil, dass die Poren bzw. Hohlräume nicht vorab speziell erzeugt werden müssen, weshalb man damit sogar komplex geformte, dreidimensionale hohle Nanostrukturen herstellen kann. Außerdem können Nanoröhren mit einem sehr großen Verhältnis von Länge zu Durchmesser erzeugt und in großen Mengen gleichzeitig hergestellt werden, was wiederum für mögliche Anwendungen eine wichtige Voraussetzung ist. Zudem ist das Ausgangsmaterial ZnO (das z.B. auch in medizinischen Salben enthalten ist) physiologisch sehr gut verträglich. Ferner zeichnet sich die Möglichkeit ab, dass man diese Methode auch auf andere ZnO- oder MgO-basierte Spinell-Nanostrukturen mit angepasster chemischer Zusammensetzung und mit entsprechenden interessanten Eigenschaften übertragen kann.

Originalveröffentlichung:

H.J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias; U. Gösele
Monocrystalline spinel nanotube fabrication based on the Kirkendal effect
Nature Materials 5 (2006) 627, August 2006

Media Contact

Dr. Andreas Trepte Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer