Mikroskope der Zukunft

„Der internationale Fortschritt auf dem Gebiet der Lichtmikroskopie ist eng mit dem Namen Heidelberg verbunden“, betont Professor Christoph Cremer vom Kirchhoff-Institut für Physik der Ruprecht-Karls-Universität Heidelberg im Rückblick auf das dieser Tage zu Ende gegangene Internationale Symposium „Optical Analysis of Biomolecular Machines“ in Berlin. Lag das Auflösungsvermögen von Lichtmikroskopen noch vor wenigen Jahren bei etwa 200 Nanometer, so erreichen moderne Lichtmikroskope heute eine Auflösung von 15 bis 20 Nanometer. Damit wird es möglich, molekulare Vorgänge in lebenden Zellen zu beobachten und auch quantitativ zu analysieren. Dafür ist jedoch eine Zusammenarbeit verschiedenster Forschungsrichtungen von Molekularbiologie über Physik, Chemie bis hin zur Bildverarbeitung unabdingbar.

Das Berliner Symposium, das im Rahmen des von Christoph Cremer koordinierten Schwerpunktprogramms „Supramolekulare Biostrukturen“ (DFG SPP1128) stattfand und von ihm selbst sowie der Berliner Kollegin Dr. Cristina Cardoso vom Max Delbrück Zentrum für Molekulare Medizin organisiert wurde, brachte dementsprechend auch Wissenschaftler der verschiedensten Forschungsgebiete zusammen. Dabei durfte natürlich einer der Pioniere der modernen Lichtmikroskopie, Professor Stefan Hell vom Max-Planck-Institut für Biophysikalische Chemie in Göttingen, nicht fehlen, der einstmals in Heidelberg am heutigen Kirchhoff-Institut für Physik diplomierte, promovierte, sich habilitierte und hier immer noch eine Professur inne hat. „Er hielt einen für alle beeindruckenden Vortrag über ein neues Konzept zur Brechung der Abbé-Beugungsgrenze“, erinnert sich Christoph Cremer. Ernst Abbé hatte 1873 erkannt, dass die Auflösung eines Lichtmikroskops durch die Welleneigenschaft des Lichts auf eben 200 Nanometer beschränkt ist. Das bedeutet, dass Objekte, die enger als 200 Nanometer (200 Milliardstel Meter) zusammenliegen, als ein einziger verwaschener Fleck erscheinen. Anfang der 1990er Jahre war es Stefan Hell dann gelungen, Laser-Licht durch zwei hoch auflösende, gegenüberliegende Objektive auf einen Punkt zu konzentrieren. Die Lichtwellen beider Objektive werden dabei so überlagert, dass sie einen wesentlich kleineren Fokus bilden, als mit einem Objektiv allein. So konnte das Auflösungsvermögen der Lichtmikroskope in Richtung der Objektivachse um den Faktor fünf bis sieben verbessert werden. In seinem neuen, RESOLFT genannten Konzept werden bestimmte optische Übergänge zweier Zustände eines Fluoreszenzmarkers dazu genutzt, die von Abbé bestimmte Beugungsgrenze aufzuheben und das Auflösungsvermögen nochmals weiter zu steigern. Diesmal in der Ebene senkrecht zur Objektivachse. Beide Verfahren sollten sich zu einem Supermikroskop verbinden lassen, mit einer dreidimensionalen Auflösung, die in den Bereich der Größe einzelner Proteinmoleküle kommt.

Fluoreszenz nutzt beispielsweise auch Dr. Udo Birk vom Heidelberger Kirchhoff-Institut für Physik bei der so genannten „Spatially Modulated Illumination“ Mikroskopie (SMI). Durch zwei gegenläufige und genau aufeinander abgestimmte Laserstrahlen, die eine so genannte strukturierte Beleuchtung erzeugen, wird das Größenauflösungsvermögen des Mikroskops verbessert, bis hinunter zu wenigen zehn Nanometer. So kann etwa festgestellt werden, wie viele Proteine sich zu Komplexen zusammenballen oder wo genau ein Molekül sich überhaupt in der Zelle befindet – und das mit einer Genauigkeit von wenigen Nanometern.

Es ist zu erwarten, dass diese und andere neue Verfahren der höchstauflösenden lichtoptischen Bildgebung das Wissen über die zellulären Nanostrukturen entscheidend verbessern werden. Dies wird von großer Bedeutung sein für unser grundlegendes Verständnis der Lebensvorgänge; ein solches verbessertes Verständnis wird langfristig aber auch neue Möglichkeiten der Gesundheitsforschung eröffnen.

Um bestimmte Moleküle in den Zellen beobachten zu können, müssen diese aber markiert werden. Christoph Cremer vergleicht das mit dem Versuch, vom Mond aus Biertrinker, die Heidelberger Biere konsumieren, herauszufinden. Das kann eigentlich nur dann gelingen, wenn in Heidelberg hergestellte Biere auf eine bestimmte Art und Weise optisch gekennzeichnet würden, beispielsweise in dem sie blau gefärbt werden. Auf dem Mond könnte man dann mit Hilfe eines superauflösenden Teleskops alle Genießer Heidelberger Biere als kleine blaue Lichtpünktchen identifizieren. Ähnlich verhält es sich auch mit den Molekülen in den Zellen, die mit Hilfe besonderer Markierungsmethoden sichtbar werden. „Ohne diese Technik funktioniert auch die hochauflösende Lichtmikroskopie nicht“, gibt Christoph Cremer zu bedenken. Dementsprechend war dieser Methodik genauso wie den Anwendungen der modernen Lichtmikroskope ein breiter Raum während des Symposiums gewidmet. Hier zeigten beispielsweise Biologen, Molekularbiologen und Chemiker, wo derzeitige und zukünftige Einsatzgebiete hochauflösender Lichtmikroskopie liegen.

„Den zukünftigen Entwicklungen im Bereich der Lichtmikroskopie wurde am Rande der Tagung ebenfalls Rechnung getragen“, blickt Christoph Cremer schon ein Stück in die Zukunft. Dabei wurden erste Pläne entwickelt, ein International Molecular Imaging Laboratory (IMIL) zu gründen, in dem die Forschungs- und Lehraktivitäten der beteiligten Institutionen und Forschungsrichtungen in diesem Bereich gebündelt werden. Aber auch die Entwicklung der Lichtmikroskopie ist noch lange nicht an ihrem Ende angelangt, und so gibt es Überlegungen, ein neues Super-Lichtmikroskop zu bauen, das an das Auflösungsvermögen eines Rasterelektronenmikroskops heranreicht und dabei gleichzeitig vielfarbige Aufnahmen zulässt.

Stefan Zeeh

Rückfragen bitte an:
Professor Christoph Cremer
Kirchhoff-Institut für Physik der Universität Heidelberg
Im Neuenheimer Feld 227
D-69120 Heidelberg
Tel. 06221 549252
cremer@kip.uni-heidelberg.de
Allgemeine Rückfragen von Journalisten auch an:
Irene Thewalt
Pressestelle der Universität Heidelberg
Tel. 06221 542311, Fax 542317
presse@rektorat.uni-heidelberg.de

Media Contact

Dr. Michael Schwarz idw

Weitere Informationen:

http://www.uni-heidelberg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer