Weltweit erster atomarer Transistor entwickelt

Bauteile technischer Geräte werden immer kleiner. Auf dem Weg der Miniaturisierung hat die Industrie den Mikrometerbereich hinter sich gelassen – inzwischen gibt es elektronische Bauteile, die zwischen 70 und 100 Nanometer groß sind. Wissenschaftler der Universität Karlsruhe haben nun den weltweit ersten atomaren Transistor entwickelt – ein Meilenstein auf dem Weg zur atomaren Elektronik. Damit sind die Karlsruher Wissenschaftler in der Lage, einen Stromkreis mit Hilfe eines einzigen Atoms zu öffnen und zu schließen. „Der Einzelatom-Transistor funktioniert durch die kontrollierte Umlagerung eines einzigen Silberatoms“, erklärt Professor Dr. Thomas Schimmel, der mit seiner Arbeitsgruppe am DFG-Centrum für Funktionelle Nanostrukturen (CFN) der Universität und am Forschungszentrum Karlsruhe beteiligt ist. Schimmel: „Bei der Entwicklung haben wir einen weltweit neuen Ansatz realisiert.“

Das Bauteil funktioniert wie ein Schalter, durch den ein elektrischer Stromkreis geöffnet und geschlossen werden kann: Auf zwei Metallelektroden, zwischen denen eine winzige Lücke den Stromkreis unterbricht, wird so lange Silber abgeschieden, bis ein einzelnes Silberatom die beiden Pole verbindet. Dadurch wird der Stromkreis geschlossen und Strom fließt. Schimmel: „Dieses Atom lassen wir hin- und herklappen, sodass der Stromkreis entweder geöffnet oder geschlossen ist.“ Der Zustand des „klappbaren Atoms“ wird über eine unabhängige dritte Elektrode kontrolliert. Wie bei einem konventionellen Transistor kann so der Strom zwischen zwei Elektroden durch eine außen angelegte Steuerspannung ein- und ausgeschaltet werden. Schimmel: „Der atomare Transistor ist damit realisiert.“ Abbildung 1 verdeutlicht die Funktionsweise.

Die Perspektiven für den Einzelatom-Transistor schätzt Schimmel als spannend ein: „Unsere gesamte Computer- und Informationstechnologie beruht auf der einfachen Fähigkeit, einen Strom von A nach B durch eine unabhängige Steuerelektrode C schalten zu können.“ Da das „Brücken-Atom“ das einzige bewegliche Teil des Einzelatom-Transistors ist, könnte er im Vergleich zu herkömmlichen Technologien prinzipiell auch bei extrem hohen Frequenzen arbeiten. Darüber hinaus lassen sich atomare Transistoren laut Schimmel bereits mit einer Spannung von wenigen Millivolt schalten, was den Energieverbrauch im Vergleich zu herkömmlichen Transistoren auf Halbleiterbasis deutlich senken würde. Schimmel: „Entscheidend aber ist, dass sich zwischen dieser 'Atomaren Elektronik' einerseits und der 'Makrowelt' mit konventioneller Elektronik andererseits ganz einfach Schnittstellen einrichten lassen.“ So können mit dem Strom, der durch ein einzelnes Transistor-Atom fließt, über einen konventionellen Operationsverstärker mühelos elektrische Geräte geschaltet werden. Schimmels Entwicklung eröffnet als erster Transistor auf der Skala einzelner Atome faszinierende Perspektiven in Richtung atomarer Elektronik und maßgeschneiderter quantenelektronischer Systeme („Quantum System Engineering“) bei Raumtemperatur.

Funktionsweise eines Transistors

Ein Transistor ist ein elektronisches Bauelement zum Schalten und Verstärken elektrischer Ströme und Spannungen. Im Gegensatz zu einem einfachen Schalter wird der Transistor durch eine extern angelegte, unabhängige Steuerspannung bedient. Die bisher gängigen Transistoren bestehen aus Halbleitermaterialien. Die Arbeitsgruppe um Professor Dr. Thomas Schimmel hat mit dem entwickelten Einzelatom-Transistor einen weltweit neuen Ansatz gefunden.

Weitere Informationen:
Dr. Gerd König
DFG-Centrum für Funktionelle Nanostrukturen der Universität Karlsruhe (TH)
Telefon: 0721/608-3409
E-Mail: gerd.koenig@cfn.uni-karlsruhe.de

Media Contact

Dr. Elisabeth Zuber-Knost idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer