Mit Mini-Scheinwerfern in einer künstlichen Nanowelt

In der Mikroelektronik schreitet die Miniaturisierung mit riesigen Schritten voran. Während der erste Transistor 1947 noch einige Zentimeter groß war, sind heute auf einer Fläche von einem Quadratzentimeter viele Millionen Transistoren untergebracht. Doch diesem Trend sind physikalische Grenzen gesetzt. „Elektrische Leiterbahnen können nicht beliebig dicht gepackt werden“ erläutert Frank Cichos, Juniorprofessor für Photonik und optische Materialien an der Technischen Universität Chemnitz. Aus diesem Grund forscht ein von ihm geleitetes Team an neuen künstlichen Nanomaterialien, in denen die Informationen mit Hilfe von Licht deutlich schneller übertragen werden sollen als in heutigen Computern. Lichtstrahlen können sich ohne „Kurzschluss“ durchdringen, weshalb schon heute Informationen etwa in Glasfaserkabeln sehr dicht gepackt werden können.

Dem Chemnitzer Forscherteam ist es nun erstmals gelungen einen Blick in die Halbleiter für Licht – die so genannten photonischen Kristalle – zu werfen. Die physikalischen Eigenschaften dieser Kristalle erlauben Licht auf kleinstem Raum einzufangen und zu transportieren. Mit ihnen kann man aber auch die Lichtabstrahlung von fluoreszierenden Stoffen manipulieren. „Das Interessante daran ist, dass der photonische Kristall das Aussenden von Licht einer bestimmten Farbe durch fluoreszierende Partikel nur in bestimmte Richtungen erlaubt oder sogar komplett verhindert“, erklärt Michael Barth. Der Diplomand war maßgeblich an den Experimenten der Arbeitsgruppe an photonischen Kristallen beteiligt. Am 23. Juni 2006 werden die Forschungsergebnisse erstmals in der angesehenen Wissenschaftszeitschrift „Physical Review Letters“ veröffentlicht. In der Online-Ausgabe dieser Zeitschrift ( http://prl.aps.org/ ) ist der Beitrag bereits am 21. Juni 2006 zu lesen.

Die Schwierigkeit bei der Untersuchung photonischer Kristalle bestand bisher darin, dass man in komplexe dreidimensionale photonische Kristalle nicht hineinblicken konnte. Den Physikern Michael Barth, Roman Schuster, Achim Gruber und Frank Cichos ist dies nun – wie sie selbst sagen – „auf verblüffend einfache Art und Weise“ gelungen. Die Forscher betteten dazu einzelne, wenige Nanometer kleine Partikel aus dem Halbleitermaterial Cadmiumselenid – so genannte Quantenpunkte – in einen photonischen Kristall aus Polymerkügelchen ein. Diese Quantenpunkte senden Licht aus und dienen so als winzige Scheinwerfer. Allerdings entscheidet der photonische Kristall in der direkten Umgebung der Quantenpunkte, in welche Richtungen dieses Licht ausgesandt wird. Um dieser Richtungsabhängigkeit auf die Spur zu kommen, benutzten die Forscher unscharfe Mikroskopieabbildungen (siehe Abbildung 2). In diesen ungewöhnlichen Bildern einzelner Quantenpunkte sind dabei alle wesentlichen Informationen über die Richtung der Lichtausbreitung im Kristall versteckt. „Damit ist es nicht nur erstmals möglich, einen Blick in die lokalen optischen Eigenschaften eines dreidimensionalen photonischen Kristalls zu werfen. Durch die Verwendung von einzelnen Quantenpunkten als Lichtquellen in diesen Materialien ergeben sich auch ganz neue Möglichkeiten für die Quanteninformationsverarbeitung“, so Frank Cichos. „Statt elektrischer Signale sollen künftig optische Signale durch die Schaltungen geleitet werden – und das etwa tausendmal schneller als bei herkömmlichen Computern“, ergänzt Michael Barth. Doch der Weg zu photonischen Prozessoren, die Informationen per Licht übertragen, sei noch lang. Mit den Einblicken in ein geeignetes Halbleitermaterial gelang den Chemnitzer Physikern jedoch ein weiterer Schritt in diese Richtung.

Weitere Informationen erteilt Frank Cichos, Telefon (03 71) 5 31 – 30 66, E-Mail cichos@physik.tu-chemnitz.de.

Media Contact

Mario Steinebach Technische Universität Chemnitz

Weitere Informationen:

http://www.tu-chemnitz.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer