Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroquasar pulsiert im Gamma-Bereich

23.05.2006


MAGIC-Teleskop entdeckt bisher unbekannte Form hochenergetischer Gammastrahlung in unserer Galaxis


Künstlerische Darstellung eines Mikroquasars. In diesem Doppelstern-System rotieren ein Neutronenstern bzw. ein Schwarzes Loch (rechts) und ein massiver gewöhnlicher Stern (links) umeinander. Durch die extreme Anziehung verliert der Stern Materie, die sich scheibenförmig um das kompakte Objekt anlagert. In Teilchenbündeln wird ein Teil der Energie mit nahezu Lichtgeschwindigkeit entlang der Rotationsachse abgestrahlt. Im Fall des jetzt beobachteten Mikroquasars LSI +61 303 liegt die Rotationsperiode der beiden Objekte bei etwa 26 Tagen. Bild: Max-Planck-Institut für Physik



Forscher des internationalen MAGIC-Projektes (Major Atmospheric Gamma-ray Imaging Cherenkov) haben erstmals eine periodisch variierende hochenergetische Gammastrahlung bei einem Mikroquasar - also einem Doppelsternsystem - nachgewiesen. Zwischen Oktober 2005 und März 2006 hatte das Forscherteam den Mikroquasar LSI +61 303 zu verschiedenen Zeitpunkten seiner Umdrehungsperiode beobachtet. Dabei stellten die Forscher fest, dass sich die Strahlungsintensität periodisch veränderte, was offensichtlich mit der Umdrehungsperiode des Doppelsternsystems im Zusammenhang steht. Die schwankende Emission hochenergetischer Gammastrahlung kann also direkt auf die Wechselwirkung der beiden Objekte zurückgeführt werden. Dabei tritt das Maximum der Strahlung nicht im Augenblick des kürzesten Abstands der beiden Objekte auf, sondern erst zu einem etwas späteren Zeitpunkt (Science Express, 18. Mai 2006).



Mikroquasare sind Doppelsterne, in denen sich ein gewöhnlicher massiver Stern und ein kompaktes Objekt - entweder ein Neutronenstern oder ein Schwarzes Loch - umkreisen. Kommen sich beide ausreichend nahe, wird durch die extreme Anziehungskraft Materie von dem Stern zu dem kompakten Objekt übertragen. Dort rotiert diese zunächst in Form einer Scheibe (s. Abb. 1), erhitzt sich und strahlt dabei Röntgenstrahlung aus. Ein Teil der frei werdenden Gravitationsenergie wird gebündelt entlang der Rotationsachse in so genannten ’Jets’ abgestrahlt.

Die Bildung der Jets von Mikroquasaren gleicht der von Quasaren oder ’aktiven galaktischen Kernen’; allerdings ist das kompakte Objekt im letzteren Fall ein mehrere Millionen Sonnenmassen schweres Schwarzes Loch im Zentrum einer Galaxie. Quasare benötigen viele Jahre zur Ausbildung der Jets und die Abstrahlung beobachtbarer Teilchen ist in erster Näherung konstant. Mikroquasare dagegen zeigen Änderungen der Strahlungsintensität in viel kürzeren Perioden und sind dadurch für wissenschaftliche Beobachtungen besonders interessant. Mikroquasare sind auch mögliche Quellen kosmischer Strahlung, ein seit nahezu 100 Jahren ungelöstes Rätsel für die Wissenschaft. Derzeit sind von Messungen im Röntgen- und Radiobereich etwa zwanzig Mikroquasare bekannt.

Hochenergetische Gamma-Strahlung entsteht im Kosmos also nur bei Objekten, die besonders hohe Energiedichten aufweisen, wie beispielsweise Supernova-Überreste oder Quasare. Sie erreicht die Erde in extrem geringer Intensität - mit etwa einem Gammaquant pro Quadratmeter und Woche. Diese Gammaquanten zerstrahlen in der Atmosphäre in eine Vielzahl elektromagnetischer Teilchen, die über sehr kurze Zeit (wenige Nanosekunden) eine charakteristische Sekundärstrahlung erzeugen. Diese Cherenkov-Strahlung wird von Teleskopen wie dem MAGIC-Teleskop auf La Palma oder dem HESS-Teleskop in Namibia aufgefangen.

Zukünftige MAGIC-Beobachtungen des Mikroquasars LSI +61 303 sowie die theoretische Interpretation der gewonnenen Daten sollen helfen zu verstehen, auf welche Weise hochenergetische Gammastrahlung in Mikroquasaren und in relativistischen Jets im Allgemeinen erzeugt und absorbiert wird.

Das MAGIC Teleskop

MAGIC ist mit einem Spiegeldurchmesser von 17 Meter unter den Cherenkov-Teleskopen das weltweit größte. Es wurde auf La Palma, einer der Kanarischen Inseln, in den Jahren 2002 bis 2004 installiert und heute von einem internationalen Team betrieben, in dem das Max-Planck-Institut für Physik in München eine federführende Rolle einnimmt. Die Astrophysiker kommen aus Deutschland (Universität Würzburg, Humboldt-Universität Berlin, Universität Dortmund sowie Max-Planck-Institut für Physik in München), Spanien, Italien, der Schweiz, Polen, Armenien, Finnland, Bulgarien und den USA. Ein zweites Teleskop ist an gleicher Stelle im Bau, um die Empfindlichkeit der Anlage weiter zu verbessern.

Ein wichtiger Schwerpunkt des MAGIC Teleskops ist eine möglichst niedrige Energieschwelle. Sie erlaubt die Beobachtung sehr weit entfernter extragalaktischer Quellen. Denn bei weit entfernten Objekten werden die Gammastrahlen durch das überall vorhandene infrarote Hintergrundlicht absorbiert. Dieser Effekt ist bei Gammastrahlen höherer Energie wesentlich stärker als bei niedrigerer Energie. Das Universum wird somit erst bei niedrigen Gamma-Energien transparent.

Ein spezielles Merkmal der MAGIC-Teleskope ist, dass sie sich sehr schnell ausrichten lassen. Innerhalb von etwa 40 Sekunden kann jedes Objekt am Himmel angesteuert werden. Dies ist von großer Bedeutung für die Beobachtung von so genannten Gammastrahlen-Ausbrüchen (gamma ray bursts). Diese dauern nur einige wenige bis zu etwa 100 Sekunden. Sie werden zunächst von Satelliten entdeckt, die diese Information dann binnen 10 bis 20 Sekunden an die bodengestützten Observatorien weiterleiten.

Um diese Ziele, also eine niedrige Energieschwelle und eine hohe Drehgeschwindigkeit zu erreichen, wurden für das MAGIC-Teleskop mehrere innovative Technologien entwickelt und eingesetzt. Dazu gehören eine aktive Spiegelsteuerung, eine tragende Struktur aus leichtem Kohlefaser-Material, die analoge Übertragung ultraschneller Signalen über optische Fasern, diamantgedrehte Aluminium-Spiegel sowie Photosensoren mit hoher Quantenausbeute.

Originalveröffentlichung:

J. Albert, E. Aliu, H. Anderhub, P. Antoranz, A. Armada, M. Asensio, C. Baixeras, J. A. Barrio, M. Bartelt, H. Bartko, D. Bastieri, S. R. Bavikadi, W. Bednarek, K. Berger, C. Bigongiari, A. Biland, E. Bisesi, R. K. Bock, P. Bordas, V. Bosch-Ramon, T. Bretz, I. Britvitch, M. Camara, E. Carmona, A. Chilingarian, S. Ciprini, J. A. Coarasa, S. Commichau, J. L. Contreras, J. Cortina, V. Curtef, V. Danielyan, F. Dazzi, A. De Angelis, R. de los Reyes, B. De Lotto, E. Domingo-Santamaría, D. Dorner, M. Doro, M. Errando, M. Fagiolini, D. Ferenc, E. Fernández, R. Firpo, J. Flix, M. V. Fonseca, L. Font, M. Fuchs, N. Galante, M. Garczarczyk, M. Gaug, M. Giller, F. Goebel, D. Hakobyan, M. Hayashida, T. Hengstebeck, D. Höhne, J. Hose, C. C. Hsu, P. G. Isar, P. Jacon, O. Kalekin, R. Kosyra, D. Kranich, M. Laatiaoui, A. Laille, T. Lenisa, P. Liebing, E. Lindfors, S. Lombardi, F. Longo, J. López, M. López, E. Lorenz, F. Lucarelli, P. Majumdar, G. Maneva, K. Mannheim, O. Mansutti, M. Mariotti, M. Martínez, K. Mase, D. Mazin, C. Merck, M. Meucci, M. Meyer, J. M. Miranda, R. Mirzoyan, S. Mizobuchi, A. Moralejo, K. Nilsson, E. Oña-Wilhelmi, R. Orduña, N. Otte, I. Oya, D. Paneque, R. Paoletti, J. M. Paredes, M. Pasanen, D. Pascoli, F. Pauss, N. Pavel, R. Pegna, M. Persic, L. Peruzzo, A. Piccioli, M. Poller, G. Pooley, E. Prandini, A. Raymers, W. Rhode, M. Ribó, J. Rico, B. Riegel, M. Rissi, A. Robert, G. E. Romero, S. Rügamer, A. Saggion, A. Sánchez, P. Sartori, V. Scalzotto, V. Scapin, R. Schmitt, T. Schweizer, M. Shayduk, K. Shinozaki, S. N. Shore, N. Sidro, A. Sillanpää, D. Sobczynska, A. Stamerra, L. S. Stark, L. Takalo, P. Temnikov, D. Tescaro, M. Teshima, N. Tonello, A. Torres, D. F. Torres, N. Turini, H. Vankov, V. Vitale, R. M. Wagner, T. Wibig, W. Wittek, R. Zanin, and J. Zapatero
Variable Very High Energy Gamma-ray Emission from the Microquasar LS I +61 316
Science, 18. Mai 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Gammastrahlung MAGIC-Teleskop Mikroquasar Teleskop

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Beschreibung der Berry-Curvature und Chern-Zahlen durch Berechnung von Bloch-Zuständen
18.02.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Supraleitung: Warum muss es so kalt sein?
18.02.2019 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Laserverfahren für funktionsintegrierte Composites

Composites vereinen gewinnbringend die Vorteile artungleicher Materialien – und schöpfen damit zum Beispiel Potentiale im Leichtbau aus. Auf der JEC World 2019 im März in Paris präsentieren die Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein breites Spektrum an laserbasierten Technologien für die effiziente Herstellung und Bearbeitung von Verbundmaterialien. Einblicke zu Füge- und Trennverfahren sowie zur Oberflächenstrukturierung erhalten Besucher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL, Halle 5A/D17.

Experten des Fraunhofer ILT erforschen und entwickeln Laserprozesse für das wirtschaftliche Fügen, Schneiden, Abtragen oder Bohren von Verbundmaterialien –...

Im Focus: Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen.

In heutigen Datenspeichern müssen magnetische Domänen mit Hilfe eines externen Magnetfeld umgeschaltet werden, welches durch elektrischen Strom erzeugt wird....

Im Focus: Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen

Und können dadurch mit ihrer neu entwickelten Mikroskopiemethode Orbitale einzelner Moleküle in verschiedenen Ladungszuständen abbilden. Die internationale Forschergruppe der Universität Regensburg berichtet über ihre Ergebnisse unter dem Titel “Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators” in der weltweit angesehenen Fachzeitschrift ,,Nature‘‘.

Sie sind die Grundbausteine der uns umgebenden Materie - Atome und Moleküle. Die Eigenschaften der Materie sind oftmals jedoch nicht durch diese Bausteine...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: Universität Konstanz gewinnt neue Erkenntnisse über die Entwicklung des Immunsystems

Wissenschaftler der Universität Konstanz identifizieren Wettstreit zwischen menschlichem Immunsystem und bakteriellen Krankheitserregern

Zellbiologen der Universität Konstanz publizieren in der Fachzeitschrift „Current Biology“ neue Erkenntnisse über die rasante evolutionäre Anpassung des...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung digital und multikulturell: Große Fachtagung GEBF findet an der Uni Köln statt

18.02.2019 | Veranstaltungen

Internationale Konferenz zum Thema Desinformation in Online-Medien

15.02.2019 | Veranstaltungen

FfE-Energietage 2019 - Die Energiewelt heute und morgen vom 1. bis 4. April 2019 in München

15.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Autonomes Fahren mit Blockchain: Bayreuther Studierende siegen im internationalen MOBI-Wettbewerb

18.02.2019 | Förderungen Preise

Bildung digital und multikulturell: Große Fachtagung GEBF findet an der Uni Köln statt

18.02.2019 | Veranstaltungsnachrichten

Beschreibung der Berry-Curvature und Chern-Zahlen durch Berechnung von Bloch-Zuständen

18.02.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics