Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stuttgarter Astrophysiker erzielen Weltrekord in der Messgenauigkeit: Neue Daten für Elemententstehung

13.11.2001


Neue Daten für Sternmodelle und die Entstehung der
chemischen Elemente. Gleich mit zwei wissenschaftlichen Publikationen haben Stuttgarter Astrophysiker in den vergangenen Monaten die Fachwelt aufhorchen lassen: Die in den Physical Review Letters (Vol. 86, Nr. 15, 9. April 2001; Vol. 87, Nr. 20, 12. November 2001) veröffentlichten Ergebnisse aufwendiger experimenteller Messungen legen es nahe, daß die Kapitel über die Entstehung der Elemente in den Sternen und über die Lebensgeschichte von Sternen neu konzipiert werden müssen. Einer internationalen Arbeitsgruppe am Institut für Strahlenphysik der Universität Stuttgart (IfS) unter der Leitung von Dr. Wolfgang Hammer, in Zusammenarbeit mit Forschern aus Athen, Mainz und Tübingen, ist es gelungen, mit verbesserten Meßmethoden die beiden "wichtigsten" Kernreaktionen in Sternen neu zu vermessen. Mit der in den Experimenten erreichten Messempfindlichkeit stellten die Stuttgarter sogar einen Weltrekord auf.

Schlüssel zur Entstehung der Elemente


Bei der ersten der beiden von der Deutschen Forschungsgemeinschaft geförderten Untersuchungen handelt es sich um die Fusion von Kohlenstoff mit Helium zu Sauerstoff (PRL Vol. 86). Die Stärke dieser Reaktion bestimmt maßgeblich die Häufigkeit und das Verhältnis der Elemente Kohlenstoff und Sauerstoff im Universum und damit auch auf unserem Planeten. Beiden Elementen kommt eine zentrale Rolle bei der Entstehung und der Existenz organischen Lebens zu. Die Fusionsreaktion wirkt sich jedoch auch ganz entscheidend auf die Produktion der schweren Elemente in Sternen aus, da der überwiegende Teil der chemischen Elemente in Sternen über ein sehr komplexes Netzwerk von Kernreaktionen aus den leichtesten Bausteinen Wasserstoff und Helium gebildet wird. Mit anderen Worten: Das "Baumaterial" für die schweren Elemente durchläuft in einer frühen Phase das Kohlenstoff- und Sauerstoffstadium, deshalb betrachtet man diese Reaktion als "die" Schlüsselreaktion der Nukleosynthese. Die neuen Resultate wurden von Ralf Kunz im Rahmen seiner Doktorarbeit erarbeitet.
Rote Riesen als Neutronenfabrik
Bei der zweiten fundamentalen Reaktion (PRL Vol. 87), die von der Stuttgarter Arbeitsgruppe untersucht wurde, handelt es sich um die wichtigste neutronenliefernde Reaktion, wie sie in den massereichen Sternen des Universums abläuft. Bei ihr fängt ein Neon-22-Kern einen Heliumkern (Alpha-Teilchen) ein und daraus entsteht das für die weitere Elemententstehung so wichtige Neutron und ein Magnesium-25-Kern. Die Neutronen sind für den Aufbau der schweren Elemente entscheidend, denn als ungeladene Teilchen können sie noch von Kernen schwerer als Eisen (Masse 56) eingefangen werden.

Der Hauptteil der Elemente bis zur Masse 100 wird in den sogenannten Roten Riesen erzeugt. Diese Sterne sind in der Regel etwa 15 bis 50 mal schwerer als unsere Sonne und in ihrem Innern herrschen Temperaturen von etwa 200 Millionen Grad. Die extrem hohen Temperaturen blähen die Riesensterne immer weiter auf; unsere Sonne wird in ihrem Endstadium als Roter Riese bis etwa zur Marsbahn reichen. Als Brennstoff haben die Roten Riesen ihren Vorrat an Wasserstoff verbraucht und nur noch Helium zurückbehalten. Die Temperaturen sind nun jedoch so hoch, dass Reaktionen mit Helium einsetzen können, in deren Verlauf auch immer mehr Neutronen für die schweren Elemente erzeugt werden.
Messgenauigkeit - Jahrmillionen auf Tage verkürzen
Um astrophysikalische Reaktionen wie die Kohlenstoff-Helium-Fusion oder die Neutronenproduktion, innerhalb einer erträglichen Zeitspanne von Wochen oder Monaten messen zu können, obwohl sie doch in den Sternen während Jahrmillionen bis -milliarden ablaufen, braucht man geeignete experimentelle Bedingungen. Trotz der hohen Temperaturen im Sterninnern verlaufen die allermeisten Kernreaktionen sehr langsam, also mit einer sehr kleinen Wahrscheinlichkeit. Und die überhaupt messbare Strahlung der experimentell im Labor erzeugten Reaktionen ist so schwach, dass man sehr viel an Technik aufbieten muss, um sie aus allen Störfaktoren wie der allgegenwärtigen Untergrundstrahlung und der kosmischen Höhenstrahlung herausfiltern zu können.
DYNAMITRON schießt auf RHINOCEROS
Die Stuttgarter Forscher profitierten dabei zunächst von der hohen Teilchenintensität, die der DYNAMITRON-Beschleuniger des Instituts für Strahlenphysik der Universität Stuttgart leistet und der sich daher für Experimente aus der Astrophysik besonders eignet. Auch die bei den Messungen eingesetzten sensiblen Detektoren wurden zum Teil am Stuttgarter Institut selbst entwickelt und für das Messproblem maßgeschneidert. Zur Untersuchung der Reaktionen von Gasatomen mit Ionenstrahlen haben die Stuttgarter Physiker speziell eine wandlose Gastargetanlage entwickelt - zunächst zur Erforschung nuklear gepumpter Laser - die wegen ihrer Masse liebevoll RHINOCEROS genannt wird. Damit ist es möglich, einen Projektilstrahl direkt aus dem Hochvakuum in ein Gasvolumen zu schießen, ohne dass dieser Strahl irgendeine störanfällige und hemmende Trennfolie durchdringen muss. Ein neu entwickelter Stuttgarter Neutronendetektor weist von den gesuchten Neutronen absolut jedes zweite nach, was dem technisch maximal Erreichbaren ziemlich nahe kommt, so daß die Messungen zur Neutronenentstehung mit einer bisher weltweit unerreichten Empfindlichkeit im Zuge der Doktorarbeit von Michael Jaeger durchgeführt werden konnten. An den Messungen waren auch Armin Mayer und Michael Fey beteiligt.
Neue astrophysikalische Reaktionsrate aufgestellt
In beiden Experimenten ist die Wahrscheinlichkeit der Reaktion äußerst gering und der Ablauf dagegen gleichzeitig hochkomplex. Dennoch benötigt man besonders ergiebige experimentelle Daten, die auch für die Extrapolation in zeitlich gar nicht mehr messbare Bereiche verwendet werden können. Die astrophysikalischen Reaktionsraten der Stuttgarter Gruppe, das Endprodukt aller Experimente, Messungen und Interpolationen, unterscheiden sich im Absolutwert von derjenigen anderer Forschungsgruppen. Ganz entscheidend ist jedoch, daß die Fehlergrenzen, also der Bereich der Unsicherheit, bei den neuen Reaktionsraten deutlich reduziert werden konnte. Denn die gesteigerte Empfindlichkeit hat große Auswirkungen auf die Fehlerquote bei der Umsetzung der Daten in die daraus abgeleitete Erklärung der Sternentwicklung. Mit den Stuttgarter Messungen konnte bei der Neon-Reaktion die Unsicherheit von einem unakzeptablen Faktor 500 auf 5, also um das Hundertfache gesenkt werden. Eine weitere Steigerung wäre nur denkbar, wenn man die Experimente, also die gesamte Laboranlage, einen Kilometer tief unter die Erdoberfläche verlegt, um der störenden Höhenstrahlung zu entgehen. "Die in unseren Messungen gewonnenen neuen Daten werden neue Berechnungen zur Nukleosynthese und zu den Sternmodellen möglich, aber auch erforderlich machen", sagt Dr. Wolfgang Hammer, Leiter der Astrophysik-Arbeitsgruppe am IfS.
Kontakt: Prof. Dr. Ulrich Kneißl, Dr. J. Wolfgang Hammer, Institut für Strahlenphysik (IfS), Tel. 0711/685-3872 bzw. -3888; Fax 0711/685-3866
E-Mail: kneissl@ifs.physik.uni-stuttgart.de, hammer@ifs.physik.uni-stuttgart.de

Dr. Ulrich Engler | idw

Weitere Berichte zu: Astrophysik Elemententstehung Helium IFS Kernreaktion Neutron Strahlenphysik Vol

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen
21.08.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Superauflösende Mikroskopie - Neue Markierungssonden im Nanomaßstab
21.08.2018 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

21.08.2018 | Physik Astronomie

Bedeutung des „Ozeanwetters“ für Ökosysteme

21.08.2018 | Biowissenschaften Chemie

Auf dem Weg zur personalisierten Medizin

21.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics