Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neptuns Dreizack

19.05.2006


In der aktuellen Mai-Ausgabe von "Nature" geben Astronomen der Universität Genf und Astrophysiker der Universität Bern die Entdeckung eines neuen extrasolaren Planetensystems bekannt. Das neu entdeckte System besteht aus drei Planeten, die zwischen 10 und 18 mal so schwer sind wie die Erde.


Modell der drei Planeten im neu entdeckten System, das 40 Lichtjahre von der Erde entfernt ist. Bild: Willy Benz, Universität Bern



Die Entdeckung der Genfer Astronomen weist Eigenschaften auf, das es von bisherigen Planeten-Entdeckungen unterscheidet: "Neptuns Dreizack", so der Übername des neuen Systems, gleicht am meisten unserem eigenen Sonnensystem. Dies zeigen die Analysen der Astrophysiker um Prof. Willy Benz vom Physikalischen Institut der Universität Bern. Die neu entdeckten Planeten bestehen gemäss deren Modellrechnungen vor allem aus Stein und Eis und nicht aus Gas, wie es bei den meisten anderen extrasolaren Planeten der Fall ist.



Diese Entdeckung stellt einen neuen Höhepunkt in der Suche nach extrasolaren Planeten dar, die an der Universität Genf vor 10 Jahren gestartet wurde und seit 5 Jahren in Zusammenarbeit mit der Universität Bern geschieht. Im Lauf der letzten 11 Jahre wurden mehr als 180 Exoplaneten entdeckt, die um Sterne kreisen, die unserer eigenen Sonne gleichen. Rund die Hälfte der Entdeckungen gelang den Astronomen der Universität Genf.

Drei neptunartige Planeten

"Neptuns Dreizack" stellt jedoch ein Novum dar, da die Eigenschaften des neuen Planetensystems denen unseres eigenen Sonnensystems ähnlich sind. In diesem Fall wird ein Stern - er ist ein wenig leichter als die Sonne - von drei Planeten umkreist, die 10, 12 und 18 mal so schwer wie die Erde sind. Damit sind sie zwar immer noch deutlich massiver als die Erde selbst, aber zugleich auch sehr klein im Vergleich mit zuvor entdeckten Exoplaneten. "Neptuns Dreizack" besitzt aber noch weitere interessante Eigenschaften: Der NASA-Satellit "Spitzer" hatte zuvor ein Übermass an Infrarot- Strahlung festgestellt, die von diesem System ausgeht und einem extrasolaren Asteroidengürtel zugeschrieben wird, wo Kollisionen zwischen Asteroiden kleinen, mikrometergrossen Silikat-Staub produzieren, der dann vom Stern aufgeheizt wird.

Das Resultat einer nationalen und internationalen Zusammenarbeit

Die Analyse und Interpretation einer solchen Entdeckung erfordert genaue Kenntnisse über die Prozesse, die bei der Bildung und Evolution von Planeten eine Rolle spielen. Dies ist nur durch eine intensive Zusammenarbeit verschiedener Institute möglich. Innerhalb dieser Zusammenarbeit sind die Berner Astrophysiker und Spezialisten für die Bildung von Planeten, Yann Alibert und der Rest des Teams um Prof. Willy Benz, für die theoretische Erklärung der beobachteten Eigenschaften zuständig. Nachdem sie mehr als 20’000 mögliche Formationsszenarien für das Planetensystem mit ihrem Modell durchgerechnet haben, zogen die Berner Forscher durch Vergleiche mit den beobachteten Bahnen und Massen Schlüsse über den Aufbau der drei Planeten: Die zwei inneren Planeten bestehen hauptsächlich aus einem Kern aus Stein und sind von einer relativ kleinen Gashülle aus Wasserstoff und Helium umgeben. Im Gegensatz dazu besteht der äusserste Planet rund zur Hälfte aus Gas, unter dem sich ein Kern aus Wasser und Stein befindet. Da das Wasser bei hoher Temperatur unter grossem Druck steht, befindet es sich im superkritischen Aggregatszustand ? ein Zustand, der in unserem Alltag unbekannt ist.

Auf internationaler Ebene haben Spezialisten aus Paris und Portugal die dynamische Stabilität des Planetensystems untersucht und dadurch die Position des Asteroidengürtels genauer bestimmen können. Insgesamt hat die Entdeckung von "Neptuns Dreizack" intensive Forschungstätigkeit von 14 Wissenschaftlern an 8 europäischen Instituten ausgelöst. Eine Tätigkeit, die wegen der aussergewöhnlichen Eigenschaften des Systems noch lange andauern wird.

Zukunftsperspektiven

Obwohl die Planetologie bezüglich der Planeten unseres eigenen Sonnensystems schon beachtliche Resultate erzielen konnte, steckt sie beim Studium extrasolarer Planeten noch in den Kinderschuhen. Neue Beobachtungsinstrumente, die in wenigen Jahren verfügbar sein werden und erstmals direkte Bilder der Exoplaneten liefern können, sind deshalb hoch willkommen. Mit neuen Beobachtungsmethoden wird es dann auch möglich sein, wirklich erdähnliche Planeten zu entdecken, für die die aktuellen Techniken noch nicht ausreichen. Die Ziele der Forscher aber bleiben unverändert: Die Suche und Analyse extrasolarer Planeten ist ein wichtiges und sehr aktives Gebiet der boden- und weltraumgestützten Astronomie, denn nur sie ermöglicht ein vertieftes Verständnis des Ursprungs unseres Sonnensystems und der Erde, und nur sie wird auf längere Sicht die Frage nach extraterrestrischem Leben beantworten können.

Nathalie Matter | idw
Weitere Informationen:
http://www.kommunikation.unibe.ch/medien/mitteilungen/news/2006/neptun.html
http://www.kommunikation.unibe.ch/medien/mitteilungen/news/2006/neptun/nature060518.pdf

Weitere Berichte zu: Astrophysik Exoplanet Planet Planetensystem Sonnensystem

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wettrennen in Sonnennähe: Ionen sind schneller als Atome
22.03.2019 | Georg-August-Universität Göttingen

nachricht Die Zähmung der Lichtschraube
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics