Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantencomputing mit einzelnen Photonen

17.05.2006


Nano-Optiker stellen zwei Qubits dar, kodiert in ihrer Polarisation und ihrer räumlichen Mode


Abbildung 1
HU-Nano-Optik


Abbildung 2
HU-Nano-Optik



Quantencomputer basieren auf den Gesetzen der Quantenphysik. Sie ermöglichen es, komplexe Probleme zu lösen, für die die Rechenleistung herkömmlicher klassischer Computer nicht ausreicht. Statt mit Bits, die den Wert Null oder Eins haben können, rechnen Quantencomputer mit Quantenbits oder kurz Qubits. Qubits kann man im Prinzip in allen physikalischen Systemen realisieren, die sich durch zwei Zustände vollständig beschreiben lassen. Dies können zwei mögliche elektronische Zustände in einem Atom (angeregt oder abgeregt), zwei Richtungen eines quantisierten Stromflusses in einem Supraleiter (Uhrzeigersinn oder Gegenuhrzeigersinn) oder der Eigendrehimpuls bzw. Spin von Atomkernen (Rotationsachse nach oben oder nach unten) sein. Das Besondere am Quantencomputer ist, dass es auch so genannte Überlagerungen der Zustände Null und Eins gibt.

... mehr zu:
»Photon »Quantencomputer »Qubit


Eine einfache Realisierung eines Qubits gelingt mittels der Kodierung in den beiden Schwingungsrichtungen (z.B senkrecht oder waagerecht) eines einzelnen Licht-"Teilchen" oder Photons. Ein weiteres Qubit kann für dasselbe Photon durch seine räumliche Mode repräsentiert sein (das Photon läuft nach links oder nach rechts). Der besondere Vorteil für die Demonstration von Quantencomputing mit Photonen ist, dass sich sehr einfach logische Gatter, das sind die Grundbausteine eines Computers, durch passive optische Elemente wie Strahlteiler, Verzögerungs- oder Polarisationsplatten realisieren lassen.

Mitarbeitern der Arbeitsgruppe Nano-Optik von Oliver Benson am Institut für Physik der Humboldt-Universität gelang es nun, eine Lichtquelle, die einzelne Photonen auf Kommando emittiert, zu benutzen, um zwei Qubits darzustellen, kodiert in ihrer Polarisation und ihrer räumlichen Mode. Mit Hilfe verschiedener optischer Komponenten konnte dann ein Quantenalgorithmus - der Deutsch-Josza-Algorithmus - erfolgreich demonstriert werden.

Das Problem, das mit dem Deutsch-Josza-Algorithmus gelöst werden kann, hat im Falle von zwei Qubits eine einfache Analogie: Man stelle sich zwei Arten von Münzen vor: echte, die auf der einen Seite Kopf und auf der anderen Seite Zahl anzeigen, und falsche, die auf beiden Seiten Kopf oder auf beiden Seiten Zahl tragen. Wie kann man nun herausfinden, ob eine Münze, die flach auf einem Tisch liegt, echt oder falsch ist? In der klassischen Welt kann man trivialer Weise die Münze umdrehen und sich die Rückseite betrachten. Auf jeden Fall aber muss man die Münze zweimal betrachten: einmal von vorne und einmal von hinten. Das entsprechende mathematische Problem ist die Aufgabe herauszufinden, ob eine unbekannte Funktion konstant ist oder ausgewogen. Im ersten Fall ergibt sie immer den Wert Null oder immer den Wert Eins, im zweiten Fall ergibt sie genauso oft Null wie Eins. Ein Quantencomputer löst dieses Problem erstaunlicherweise mit nur einem einzigen Funktionaufruf, d.h. ein Quantencomputer muss sich die Münze aus dem obigen Beispiel nur einmal betrachten.

Das Schema (Abb. 1) zeigt den experimentellen Aufbau des Berliner Experiments. Einzelne Photonen werden in ein Interferometer geschickt, das aus verschiedenen Komponenten, wie Strahlteilern (mit BS bezeichnet) und Spiegeln, besteht. Eine beliebige konstante oder ausgewogene Funktion kann formal durch Hinein- oder Herausklappen von optischen Verzögerungsplatten (mit ?/2 bezeichnet) dargestellt werden. Der Quantenalgorithmus wird ausgeführt, indem man genau ein Photon in das Interferometer schickt. Das Ergebnis der Rechnung ist ein einzelner Klick in einem der beiden Detektoren 1 oder 0 am Interferometerausgang (durch Halbkreise dargestellt). Wie erläutert, muss man den Algorithmus nur ein einziges Mal ausführen, um zu wissen, welche Funktion vorab eingestellt wurde.

In Abbildung 2 ist das Resultat vieler Messungen zusammengefasst. Dabei ist die Wahrscheinlichkeit, einen Klick an einem der beiden Detektoren zu messen (rote, bzw. blaue Punkte) für die insgesamt vier möglichen Funktionen (zwei konstante und zwei ausgewogene) dargestellt.

Nach dieser ersten erfolgreichen Demonstration ist es nun das nächste Ziel der Berliner Forscher eine Quelle herzustellen, die nicht nur ein einziges, sondern eine beliebige Anzahl von identischen Photonen auf Kommando erzeugt. Mit solchen Quellen wäre es möglich, wesentlich komplexere Quantenalgorithmen zu demonstrieren. Erste Schritte in diese Richtung befinden sich bereits in Vorbereitung.

Originalveröffentlichung: Deutsch-Jozsa Algorithm using Triggered Single Photons from a Single Quantum Dot, M. Scholz, T. Aichele, S. Ramelow, O. Benson, Physical Review Letters 96, 180501 (2006)

Informationen Prof. Dr. Oliver Benson, Institut für Physik
Telefon [030] 2093 4711,- 7927
e-mail oliver.benson@physik.hu-berlin.de

Heike Zappe | idw
Weitere Informationen:
http://www.hu-berlin.de/
http://nano.physik.hu-berlin.de

Weitere Berichte zu: Photon Quantencomputer Qubit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp
18.10.2019 | Forschungsverbund Berlin e.V.

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics