Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantencomputing mit einzelnen Photonen

17.05.2006


Nano-Optiker stellen zwei Qubits dar, kodiert in ihrer Polarisation und ihrer räumlichen Mode


Abbildung 1
HU-Nano-Optik


Abbildung 2
HU-Nano-Optik



Quantencomputer basieren auf den Gesetzen der Quantenphysik. Sie ermöglichen es, komplexe Probleme zu lösen, für die die Rechenleistung herkömmlicher klassischer Computer nicht ausreicht. Statt mit Bits, die den Wert Null oder Eins haben können, rechnen Quantencomputer mit Quantenbits oder kurz Qubits. Qubits kann man im Prinzip in allen physikalischen Systemen realisieren, die sich durch zwei Zustände vollständig beschreiben lassen. Dies können zwei mögliche elektronische Zustände in einem Atom (angeregt oder abgeregt), zwei Richtungen eines quantisierten Stromflusses in einem Supraleiter (Uhrzeigersinn oder Gegenuhrzeigersinn) oder der Eigendrehimpuls bzw. Spin von Atomkernen (Rotationsachse nach oben oder nach unten) sein. Das Besondere am Quantencomputer ist, dass es auch so genannte Überlagerungen der Zustände Null und Eins gibt.

... mehr zu:
»Photon »Quantencomputer »Qubit


Eine einfache Realisierung eines Qubits gelingt mittels der Kodierung in den beiden Schwingungsrichtungen (z.B senkrecht oder waagerecht) eines einzelnen Licht-"Teilchen" oder Photons. Ein weiteres Qubit kann für dasselbe Photon durch seine räumliche Mode repräsentiert sein (das Photon läuft nach links oder nach rechts). Der besondere Vorteil für die Demonstration von Quantencomputing mit Photonen ist, dass sich sehr einfach logische Gatter, das sind die Grundbausteine eines Computers, durch passive optische Elemente wie Strahlteiler, Verzögerungs- oder Polarisationsplatten realisieren lassen.

Mitarbeitern der Arbeitsgruppe Nano-Optik von Oliver Benson am Institut für Physik der Humboldt-Universität gelang es nun, eine Lichtquelle, die einzelne Photonen auf Kommando emittiert, zu benutzen, um zwei Qubits darzustellen, kodiert in ihrer Polarisation und ihrer räumlichen Mode. Mit Hilfe verschiedener optischer Komponenten konnte dann ein Quantenalgorithmus - der Deutsch-Josza-Algorithmus - erfolgreich demonstriert werden.

Das Problem, das mit dem Deutsch-Josza-Algorithmus gelöst werden kann, hat im Falle von zwei Qubits eine einfache Analogie: Man stelle sich zwei Arten von Münzen vor: echte, die auf der einen Seite Kopf und auf der anderen Seite Zahl anzeigen, und falsche, die auf beiden Seiten Kopf oder auf beiden Seiten Zahl tragen. Wie kann man nun herausfinden, ob eine Münze, die flach auf einem Tisch liegt, echt oder falsch ist? In der klassischen Welt kann man trivialer Weise die Münze umdrehen und sich die Rückseite betrachten. Auf jeden Fall aber muss man die Münze zweimal betrachten: einmal von vorne und einmal von hinten. Das entsprechende mathematische Problem ist die Aufgabe herauszufinden, ob eine unbekannte Funktion konstant ist oder ausgewogen. Im ersten Fall ergibt sie immer den Wert Null oder immer den Wert Eins, im zweiten Fall ergibt sie genauso oft Null wie Eins. Ein Quantencomputer löst dieses Problem erstaunlicherweise mit nur einem einzigen Funktionaufruf, d.h. ein Quantencomputer muss sich die Münze aus dem obigen Beispiel nur einmal betrachten.

Das Schema (Abb. 1) zeigt den experimentellen Aufbau des Berliner Experiments. Einzelne Photonen werden in ein Interferometer geschickt, das aus verschiedenen Komponenten, wie Strahlteilern (mit BS bezeichnet) und Spiegeln, besteht. Eine beliebige konstante oder ausgewogene Funktion kann formal durch Hinein- oder Herausklappen von optischen Verzögerungsplatten (mit ?/2 bezeichnet) dargestellt werden. Der Quantenalgorithmus wird ausgeführt, indem man genau ein Photon in das Interferometer schickt. Das Ergebnis der Rechnung ist ein einzelner Klick in einem der beiden Detektoren 1 oder 0 am Interferometerausgang (durch Halbkreise dargestellt). Wie erläutert, muss man den Algorithmus nur ein einziges Mal ausführen, um zu wissen, welche Funktion vorab eingestellt wurde.

In Abbildung 2 ist das Resultat vieler Messungen zusammengefasst. Dabei ist die Wahrscheinlichkeit, einen Klick an einem der beiden Detektoren zu messen (rote, bzw. blaue Punkte) für die insgesamt vier möglichen Funktionen (zwei konstante und zwei ausgewogene) dargestellt.

Nach dieser ersten erfolgreichen Demonstration ist es nun das nächste Ziel der Berliner Forscher eine Quelle herzustellen, die nicht nur ein einziges, sondern eine beliebige Anzahl von identischen Photonen auf Kommando erzeugt. Mit solchen Quellen wäre es möglich, wesentlich komplexere Quantenalgorithmen zu demonstrieren. Erste Schritte in diese Richtung befinden sich bereits in Vorbereitung.

Originalveröffentlichung: Deutsch-Jozsa Algorithm using Triggered Single Photons from a Single Quantum Dot, M. Scholz, T. Aichele, S. Ramelow, O. Benson, Physical Review Letters 96, 180501 (2006)

Informationen Prof. Dr. Oliver Benson, Institut für Physik
Telefon [030] 2093 4711,- 7927
e-mail oliver.benson@physik.hu-berlin.de

Heike Zappe | idw
Weitere Informationen:
http://www.hu-berlin.de/
http://nano.physik.hu-berlin.de

Weitere Berichte zu: Photon Quantencomputer Qubit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Götterspeise, Haftnotizen und Smartphone-Sensoren – die Geheimnisse der Adhäsion
25.04.2019 | Technische Universität Berlin

nachricht Münchner Lichtquanten-Destillerie
24.04.2019 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Volle Fahrt voraus für SmartEEs auf der Automotive Interiors Expo 2019

Flexible, organische und gedruckte Elektronik erobert den Alltag. Die Wachstumsprognosen verheißen wachsende Märkte und Chancen für die Industrie. In Europa beschäftigen sich Top-Einrichtungen und Unternehmen mit der Forschung und Weiterentwicklung dieser Technologien für die Märkte und Anwendungen von Morgen. Der Zugang seitens der KMUs ist dennoch schwer. Das europäische Projekt SmartEEs - Smart Emerging Electronics Servicing arbeitet an der Etablierung eines europäischen Innovationsnetzwerks, das sowohl den Zugang zu Kompetenzen als auch die Unterstützung der Unternehmen bei der Übernahme von Innovationen und das Voranschreiten bis zur Kommerzialisierung unterstützt.

Sie umgibt uns und begleitet uns fast unbewusst durch den Alltag – gedruckte Elektronik. Sie beginnt bei smarten Labels oder RFID-Tags in der Kleidung,...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Neuer LED-Leuchtstoff spart Energie

Das menschliche Auge ist für Grün besonders empfindlich, für Blau und Rot hingegen weniger. Chemiker um Hubert Huppertz von der Universität Innsbruck haben nun einen neuen roten Leuchtstoff entwickelt, dessen Licht vom Auge gut wahrgenommen wird. Damit lässt sich die Lichtausbeute von weißen LEDs um rund ein Sechstel steigern, was die Energieeffizienz von Beleuchtungssystemen deutlich verbessern kann.

Leuchtdioden oder LEDs können nur Licht einer bestimmten Farbe erzeugen. Mit unterschiedlichen Verfahren zur Farbmischung lässt sich aber auch weißes Licht...

Im Focus: Münchner Lichtquanten-Destillerie

Garchinger Physiker entwickeln eine Technik, um reine einzelne Photonen zu extrahieren

Das Destillieren von Spirituosen steigert den Gehalt von Alkohol relativ zum Wasseranteil. Ähnlich wirkt eine Methode auf Lichtquanten, Photonen, die ein Team...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie sieht das Essen der Zukunft aus?

25.04.2019 | Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

UKP-Laser erobern Makrobearbeitung

25.04.2019 | Verfahrenstechnologie

Kraftwerk ohne DNA

25.04.2019 | Biowissenschaften Chemie

Chemische Reaktionen per Licht antreiben

25.04.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics