Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Distanzbeziehung auf einen Blick

20.04.2006


Ein braslianisch-deutsches Forscherteam misst direkt und in einem einzigen Experiment, wie stark Photonen verschränkt sind


Die beiden schwarzen Kaestchen umschließen jeweils ein Photon eines verschränkten Paares und seiner Kopie zusammen. Die beiden schwarzen Kreise stellen das erste, die beiden dunkelgrauen Kreise das zweite Photon in beiden Kopien dar. Die grau unterlegten Rechtecke fassen sie nach Merkmalen zusammen: eines für den Impuls, das andere für die Polarisation. Bild: Max-Planck-Institut für Physik komplexer Systeme



Verschränkte Photonen sind wie ein innig verbundenes, aber ziemlich konfuses Paar: Erst können sich beide Partner nicht festlegen, wer beim Bäcker und wer beim Metzger einkauft. Wenn den einen aber der Duft frischer Brötchen in die Backstube lockt, geht der andere ganz selbstverständlich zum Metzger - ohne dass die beiden einander sehen, hören oder sonstwie Informationen austauschen. So innig miteinander verbandelt zu sein, heißt in der Physik nicht Liebe, sondern vollkommene Verschränkung. Und die Paare um die es dabei geht, sind meistens Photonen. Ob sie völlig oder nur teilweise miteinander verschränkt sind, haben Wissenschaftler der Universität von Rio de Janeiro und des Max-Planck-Instituts für Physik komplexer Systeme nun erstmals direkt gemessen. Bislang konnten Physiker diesen Grad der Verschränkung entweder nur mit sehr viel Aufwand und vielen verschiedenen Messungen auf indirekte Weise nachweisen. Oder sie brauchten bereits ziemlich genaue Vorstellung, wie ihre Messwerte ausfallen würden. (Nature, 20. April 2006)

... mehr zu:
»Photon »Physik »Polarisation


Verschränkte Teilchen, ob Photonen oder Atome, sind die kleinsten Einheiten, mit denen Quantencomputer und Quantenkryptografie, aber auch die Teleportation arbeiten sollen. Derzeit fordern sie aber vor allem die Experimentierkunst der Physiker heraus - und das Weltbild der meisten Menschen. Völlig miteinander verschränkt zu sein, heißt etwa für mikroskopische Teilchen wie Photonen: Im Moment, in dem das Photonenpaar in speziellen Kristallen entsteht, sind kaum irgendwelche Eigenschaften der beiden Photonen festgelegt. Wo genau sie sich aufhalten, ist ebenso vage bestimmt, wie die Richtung, in die sie fliegen. Und wie sie polarisiert sind, in welcher Richtung also die Pakete ihrer Lichtwellen schwingen, ist sogar vollkommen unklar. Erst wenn zum Beispiel eines der beiden Photonen in einem geeigneten Filter offenbaren muss, wie es polarisiert ist, wird es auf eine Schwingungsrichtung festgelegt. Nimmt es zufällig eine vertikale Richtung an, heißt das aber für seinen Partner: Er muss horizontal schwingen. Die Photonen können sich dabei sogar in ganz unterschiedlichen Ecken des Universums rumtreiben. Und eine Information, welches von beiden welche Polarisation annimmt, tauschen sie auch nicht aus.

Nicht immer aber erreichen Photonen diesen vollkommenen Grad der Verschränkung. Oft behält das zweite Photon mehr oder wenig viel Freiheit, seine Polarisation zu wählen. "Wie stark die beiden Photonen verschränkt sind, können wir mit der Concurrence messen", sagt Andreas Buchleitner, Theoretiker am Max-Planck-Institut für Physik komplexer Systeme. Der englische Begriff Concurrence, der kein deutsches Pendant hat, gibt an, wieviel Information ein Teilchen über das andere mit sich trägt. "Wir haben gezeigt, dass sich die Concurrence als Erwartungswert einer Observablen darstellen lässt", sagt Buchleitner. Vereinfacht gesprochen haben die Wissenschaftler damit die Anleitung geliefert, die Verschränkung der Photonen mit einem einzigen Experiment zu messen. Bislang reichte ein Experiment nur, wenn zwei Photonen völlig oder überhaupt nicht verschränkt sind. Dann ist im ersten Fall klar: Ist das eine Photon zum Beispiel horizontal polarisiert, muss das andere vertikal polarisiert sein. Im zweiten Fall heißt das: Das zweite Photon kann schwingen wie es will, egal was das erste macht.

In allen anderen Fällen, und die sind sehr viel häufiger, reicht eine Messung nicht. Dann vermischen sich in einem Zustand nämlich verschränkte und unverschränkte Anteile. Und zwar so komplex, dass Physiker alle messbaren Merkmale eines Photonenpaares bestimmen müssen, um seinen Zustand und damit den Grad seiner Verschränkung zu charakterisieren. Gewonnen haben sie diese Information zum Beispiel, indem sie gemessen haben, wie hoch die vertikalen und horizontalen Anteile an einer bestimmten Polarisation sind. Außerdem mussten sie bestimmen, wie die Wellenberge dieser Schwingungen gegeneinander verschoben sind. Auf diese Weise mussten sie eine große Zahl aufwendiger Messungen machen, die selbst für die Labore mit den leistungsfähigsten Geräten eine diffizile Angelegenheit sind.

Florian Mintert, der am Max-Planck-Institut für die Physik komplexer Systeme promovierte, Marek Kus von der Polnischen Akademie der Wissenschaften in Warschau, und Andreas Buchleitner haben aber eine elegante Messmethode ausgetüftelt, mit der sie nur noch eine Messung an zwei Kopien eines Zustands brauchen. "Und diese beiden Kopien eines Zustands haben die Kollegen in Rio jetzt sogar auf einem Photonenpaar untergebracht", sagt Buchleitner. Eine Kopie haben sie im Impuls und die andere in der Polarisation gespeichert. Denn diese Merkmale oder, wie Physiker sagen, diese Freiheitsgrade sind völlig unabhängig voneinander, so dass die Wissenschaftler mit ihnen verschiedene Zustände charakterisieren können: In unserem Fall den Impuls-Zustand und der Polarisationszustand. Daher konnten die Physiker eine Kopie des Zustand nun durch den Impuls der Photonen charakterisieren und die andere durch ihre Polarisation. Das Experiment gestalteten die brasilianischen Kollegen Buchleitners so, dass sie die beiden Größen unabhängig voneinander bestimmen konnten.

Bislang konnten Experimentatoren den Grad der Verschränkung in ähnlich einfacher Weise nur unter einer Bedingung bestimmen: Ehe sie die Photonen durch ihre Apparatur schickten, mussten sie deren Impuls und Polarisation schon ziemlich genau kennen. "Wir können jetzt auf einfache Weise die Verschränkung unbekannter Zustände bestimmen", sagt Buchleitner.

Originalveröffentlichung:

Stephen Walborn, Paulo Souto Ribeiro, Luiz Davidovich, Florian Mintert und Andreas Buchleitner
Experimental determination of entanglement with single measurement
Nature, 20. April, 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Photon Physik Polarisation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Münchner Lichtquanten-Destillerie
24.04.2019 | Max-Planck-Institut für Quantenoptik

nachricht Quantenmaterie fest und supraflüssig zugleich
23.04.2019 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer LED-Leuchtstoff spart Energie

Das menschliche Auge ist für Grün besonders empfindlich, für Blau und Rot hingegen weniger. Chemiker um Hubert Huppertz von der Universität Innsbruck haben nun einen neuen roten Leuchtstoff entwickelt, dessen Licht vom Auge gut wahrgenommen wird. Damit lässt sich die Lichtausbeute von weißen LEDs um rund ein Sechstel steigern, was die Energieeffizienz von Beleuchtungssystemen deutlich verbessern kann.

Leuchtdioden oder LEDs können nur Licht einer bestimmten Farbe erzeugen. Mit unterschiedlichen Verfahren zur Farbmischung lässt sich aber auch weißes Licht...

Im Focus: Münchner Lichtquanten-Destillerie

Garchinger Physiker entwickeln eine Technik, um reine einzelne Photonen zu extrahieren

Das Destillieren von Spirituosen steigert den Gehalt von Alkohol relativ zum Wasseranteil. Ähnlich wirkt eine Methode auf Lichtquanten, Photonen, die ein Team...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantenmaterie fest und supraflüssig zugleich

Forscher um Francesca Ferlaino an der Universität Innsbruck und an der Österreichischen Akademie der Wissenschaften haben in dipolaren Quantengasen aus Erbium- und Dysprosiumatomen suprasolide Zustände beobachtet. Im Dysprosiumgas ist dieser exotische Materiezustand außerordentlich langlebig, was die Tür für eingehendere Untersuchungen weit aufstößt.

Suprasolidität ist ein paradoxer Zustand, in dem die Materie sowohl supraflüssige als auch kristalline Eigenschaften besitzt. Die Teilchen sind wie in einem...

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

Augmented Reality und Softwareentwicklung: 33. Industrie-Tag InformationsTechnologie (IT)²

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer LED-Leuchtstoff spart Energie

24.04.2019 | Energie und Elektrotechnik

Control 2019: Fraunhofer IPT stellt High-Speed-Mikroskop mit intuitiver Gestensteuerung vor

24.04.2019 | Messenachrichten

Warum der moderne Mensch aus Afrika kommt

24.04.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics