Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserwelle steuert Elektronenbewegung in Molekülen

18.04.2006


Erstmals ist es einem niederländisch-deutschen Forscherteam gelungen, chemische Reaktionen über die Steuerung der Elektronenbewegung in den beteiligten Atomen zu beeinflussen


Dissoziation eines Deuterium-Moleküls. Unter dem Einfluss eines Femtosekundenpulses (rote Kurve) beginnt die Elektronenwolke (blau) zwischen den Atomkernen (grau) hin und her zu schwingen (lilafarbene Kurve). Nach einer festgelegten Zeit zerfällt das Molekül in ein Deuterium-Ion und ein neutrales Deuterium-Atom. Bild: AMOLF/Max-Planck-Institut für Quantenoptik



Ultrakurze Laserpulse im Femtosekunden-Bereich haben sich als effektive Werkzeuge bewährt, um photochemische Reaktionen kontrolliert zu steuern: Unter dem Einfluss des Lichtpulses ändern die Elektronen ihre Quantenzustände, was zum Aufbrechen einer chemischen Bindung oder auch zu ihrer Neubildung führen kann. Wissenschaftler des FOM Institute for Atomic and Molecular Physics (AMOLF), Amsterdam, des Max-Instituts für Quantenoptik (MPQ) in Garching sowie der Universitäten Bielefeld und Hamburg sind nun einen entscheidenden Schritt weiter gekommen. Wie die Forscher in der Fachzeitschrift Science (14. April 2006) berichten, konnten sie mit "maßgeschneiderten" Wellenformen direkt die Bewegung der in die chemischen Bindungen involvierten Elektronen und damit auch das Reaktionsergebnis kontrollieren. Der hier für Dissoziation von Deuterium-Molekülen erzielte Erfolg ebnet vielleicht den Weg, auch Elektronen-Transferprozesse in großen Biomolekülen wie etwa DNA-Basenpaaren zu steuern.

... mehr zu:
»Atom »Elektron »Molekül


Erst seit kurzem verfügen Forscher über Femtosekunden-Pulse (1 Femtosekunde ist ein Millionstel von einem Milliardstel einer Sekunde) mit präzise kontrollierten Wellenformen. 2002 gelang es Prof. Ferenc Krausz (damals Technische Universität Wien, heute Direktor am Max-Planck-Institut für Quantenoptik) in Zusammenarbeit mit Prof. Theodor Hänsch (ebenfalls Direktor am MPQ), mit Hilfe der Nobelpreis-gekrönten Frequenzkammtechnik, so genannte "phasenstabilisierte" Laser zu entwickeln. Diese Laser zeichnen sich dadurch aus, dass von Puls zu Puls nicht nur Intensität und Frequenz, sondern auch die Lage der Maxima und Minima der Lichtschwingungen identisch ist.

Die hochintensiven, perfekt kontrollierten Felder solcher Femtosekundenpulse üben auf die Elektronen in einem Atom vergleichbare Kräfte aus wie der positiv geladene Atomkern. Wie Wissenschaftler um Prof. Krausz in verschiedenen Experimenten gezeigt haben, lässt sich mit solchen Pulsen die Bewegung der um die Atome kreisenden Elektronen direkt steuern, was sowohl die kontrollierte Entfernung von Elektronen aus Atomen oder Molekülen als auch die Erzeugung von Attosekunden-Pulsen (eine Attosekunde ist ein Milliardstel von einer Milliardstel Sekunde) ermöglicht. Daher stellt sich die Frage, ob man auch die Elektronen, die in Molekülen die chemische Bindung vermitteln, durch solche Pulse kontrollieren kann, und ob sich dadurch die Dynamik von chemischen Reaktionen beeinflussen lässt.

Ein Team um Dr. Matthias Kling hat nun am Max-Planck-Institut für Quantenoptik den Einfluss von linear polarisierten, fünf Femtosekunden langen Laserpulsen auf die Dissoziation, d.h. das Auseinanderbrechen von positiv geladenen Deuterium-Ionen (D2+ = schwerer Wasserstoff) untersucht. Die aus kommerziell erhältlichem D2 durch Laser-Ionisation erzeugten D2+-Ionen sind denkbar einfach aufgebaut: Sie enthalten zwei positiv geladene Kerne, die jeweils aus einem Proton und einem Neutron bestehen, und ein Elektron. Mit einem "Sensitive Imaging"-Detektor, einer Art Kamera, die eine Gruppe um Prof. Marc Vrakking am AMOLF entwickelt hatte, bestimmten die Wissenschaftler die Richtung, unter der die Molekülfragmente - ein Deuterium-Atom sowie ein positiv geladenes Deuterium-Ion - nach der Dissoziation ausgesendet wurden.

Solange sie Laserpulse ohne Phasenstabilisation verwendeten, war die Emissionsrichtung symmetrisch in Bezug auf die Polarisationsachse. Die Anwendung von Lichtpulsen, bei denen die Phase des elektrischen Lichtfeldes genau festgelegt war, führte hingegen dazu, dass die Bruchstücke - je nach Lage der gewählten Phase - bevorzugt in eine bestimmte Richtung flogen. Tatsächlich konnte die Emissionsrichtung über die Wahl der Phase gezielt gesteuert werden. Wurde die Phase so justiert, dass die Ionen nach rechts flogen (oberer Teil der Abbildung), so bewirkte eine Phasenverschiebung um 180 Grad eine Umkehrung der Emissionsrichtung, d.h. die Ionen flogen nach links (unterer Teil der Abbildung).

Quantenmechanische Rechnungen zeigten dann, dass sich dieses Phänomen folgendermaßen erklären lässt: Anfänglich ist das Elektron "delokalisiert", d.h. seine Aufenthaltswahrscheinlichkeit - symbolisiert durch die blauen Wolken in der Abbildung - erstreckt sich über beide Atomkerne, wodurch die chemische Bindung zustande kommt. Durch die Wechselwirkung mit dem Laserfeld besetzt das Elektron gleichzeitig zwei Energiezustände des D2+-Ions, im Fachjargon heißt dieser Vorgang "kohärente Überlagerung". Dies hat zur Folge, dass sich die Elektronenwolke, abhängig von der Phase des Feldes, auf der rechten oder der linken Seite der chemischen Bindung befindet.

Die Oszillation des Lichtfeldes zwingt das Elektron, zwischen beiden Seiten hin und her zu schwingen. Dadurch wird die chemische Bindung zwischen den positiv geladenen Kernen allmählich schwächer, ihr Abstand vergrößert sich, und das Molekül wird schließlich instabil. Wenn das Molekül in zwei Fragmente aufbricht, bleibt das Elektron an einem der beiden Ionen hängen, das dann zu einem neutralen D-Atom wird, während das andere Bruchstück als positiv geladenes Ion im Experiment nachgewiesen wird. Da die Dauer des Dissoziationsprozesses fest steht, lässt sich also durch Wahl der Phase des Lichtfeldes gezielt steuern, mit welchem Nukleon sich das Elektron zum Zeitpunkt des Zerfalls zusammen tut.

Elektronentransferprozesse spielen in der Chemie und Biologie eine außerordentlich wichtige Rolle. Schneller Elektronentransfer kann sowohl zur Schädigung als auch zur Reparatur von DNA-Basen-Paaren führen. Die hier für die Dissoziation von D2-Molekülen erhaltenen Resultate könnten einen Weg aufzeigen, wie sich solche Vorgänge auch in großen Biomolekülen durch elektrische Lichtfelder steuern lassen. Die Möglichkeit, den Ladungstransport gezielt durch einzelne Moleküle zu lenken, könnte auch zu einer weiteren Miniaturisierung von Bauelementen der molekularen Elektronik führen.
[OM]

Originalveröffentlichung:

M.F. Kling, Ch. Siedschlag, A.-J. Verhoef, J.I. Khan, M. Schultze, Th. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, M.J.J. Vrakking
Control of Electron Localization in Molecular Dissociation

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atom Elektron Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spintronik: Forscher zeigen, wie sich nichtmagnetische Materialien magnetisch machen lassen
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Erster radioastronomischer Nachweis eines extrasolaren Planetensystems um einen Hauptreihenstern
05.08.2020 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

Eine entscheidende Ergänzung zum Stanzen von Kontakten erarbeiteten Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT. Die Aachener haben im Rahmen des EFRE-Forschungsprojekts ScanCut zusammen mit Industriepartnern aus Nordrhein-Westfalen ein hybrides Fertigungsverfahren zum Laserschneiden von dünnwandigen Metallbändern entwickelt, wodurch auch winzige Details von Kontaktteilen umweltfreundlich, hochpräzise und effizient gefertigt werden können.

Sie sind unscheinbar und winzig, trotzdem steht und fällt der Einsatz eines modernen Fahrzeugs mit ihnen: Die Rede ist von mehreren Tausend Steckverbindern im...

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationstage 2020 – digital

06.08.2020 | Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Türsteher im Gehirn

06.08.2020 | Biowissenschaften Chemie

Kognitive Energiesysteme: Neues Kompetenzzentrum sucht Partner aus Wissenschaft und Wirtschaft

06.08.2020 | Energie und Elektrotechnik

Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

06.08.2020 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics