Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Astrophysiker begleiten zwei Schwarze Löcher auf dem Weg zur Verschmelzung

06.04.2006


In 325 Millionen Lichtjahren Entfernung hat sich ein ungewöhnliches Paar gefunden: Angezogen von ihren gigantischen Kräften sind zwei Schwarze Löcher unentrinnbar miteinander verbunden und jagen mit einer Geschwindigkeit von 1.200 Kilometern pro Sekunde dahin. Das düstere Schicksal der beiden steht jetzt schon fest: Irgendwann in ferner Zukunft werden die umeinander rotierenden Giganten miteinander verschmelzen. Das haben Wissenschaftler einer Emmy Noether-Gruppe der Universität Bonn mit Hilfe des NASA-Röntgensatelliten CHANDRA herausgefunden. Ihre Ergebnisse werden in der nächsten Ausgabe von "Astronomy & Astrophysics" veröffentlicht.



"Die beiden Schwarzen Löcher im Galaxienhaufen ’Abell 400’ sind bereits seit geraumer Zeit durch die Radiowellen bekannt", erzählt Dr. Thomas Reiprich, Leiter der Emmy Noether-Gruppe, "Mit dem Röntgensatelliten CHANDRA konnten wir jetzt endlich unsere Vermutung beweisen, dass sie durch die Schwerkraft aneinander gefesselt sind und irgendwann verschmelzen werden."

... mehr zu:
»Loch »Temperatur


Vereinigung der Giganten

Der Verschmelzungsprozess der Schwarzen Löcher wird jedoch frühestens in einigen Millionen Jahren stattfinden. Die beiden stehen also erst am Anfang einer langen "Beziehung", die aus drei Phasen besteht: Zunächst entsteht durch die Rotation "dynamische Reibung"; es geht Energie verloren und die beiden Schwarzen Löcher rücken näher aneinander. In der zweiten Phase, dem so genannten "Drei-Körper-Prozess", wird ein Stern angezogen, auf eine hohe Geschwindigkeit gebracht und schließlich wieder "herausgekickt" - er entzieht dem System dabei weitere Energie. Im dritten und letzten Kapitel des Beziehungsdramas schließlich werden starke Gravitationswellen frei, die aus Sicht eines Beobachters die Raumzeit stauchen und strecken: Weitere Energie geht verloren und es kommt zum Verschmelzungsprozess.

Ein Galaxienhaufen besteht aus Galaxien und sehr massivem, heißem Gas, das im Zentrum am dichtesten ist. "CHANDRA misst mit einer bisher unerreichten räumlichen Auflösung die Röntgenstrahlung, die von dem Gas ausgeht. Und diese verrät uns Temperatur, Dichte und Druck des Gases", erklärt der US-Amerikaner Dr. Daniel Hudson, der mit Hilfe von Dr. Reiprich und den amerikanischen Wissenschaftlern Tracy Clark und Craig Sarazin seine Forschungsergebnisse in der kommenden Ausgabe von "Astronomy & Astrophysics" veröffentlicht: Hudson konnte beweisen, dass das Gas relativ zur Bewegungsrichtung der Schwarzen Löcher strömt, ähnlich den Wellen hinter einem Schiff - die Schwarzen Löcher bewegen sich also zusammen in eine Richtung.

Direkt vor den Schwarzen Löchern befindet sich ein so genannter "Hot Spot"; hier ist die Temperatur des Gases am höchsten. "Vergleichen wir die Temperatur im Hot Spot mit der in der sonstigen Umgebung der Schwarzen Löcher, können wir daraus ihre Geschwindigkeit berechnen", erklärt Dr. Hudson. Ergebnis: Die Giganten rasen mit 1.200 Kilometern pro Sekunde durch "Abell 400".

Kontakt:
Dr. Thomas H. Reiprich
Argelander Institut für Anstronomie
Telefon: 0228/73-3642
E-mail: reiprich@astro.uni-bonn.de

Dr. Daniel S. Hudson
Argelander Institut für Astronomie
Telefon: 0228/73-6788
E-mail: dhudson@astro.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Loch Temperatur

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Physiker der Universität Rostock schaffen erstmals Licht, das sich wie exotische Elementarteilchen verhält
10.12.2019 | Universität Rostock

nachricht Geminiden - Die Wünsch-dir-was-Sternschnuppen vor Weihnachten
09.12.2019 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Geminiden - Die Wünsch-dir-was-Sternschnuppen vor Weihnachten

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Die Geminiden, die Mitte Dezember zu sehen sind, sind der "zuverlässigste" der großen Sternschnuppen-Ströme mit bis zu 120 Sternschnuppen pro Stunde. Leider stört in diesem Jahr der Mond zur besten Beobachtungszeit.

Sie wurden nach dem Sternbild Zwillinge benannt: Die „Geminiden“ sorgen Mitte Dezember immer für ein schönes Sternschnuppenschauspiel. In diesem Jahr sind die...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungsnachrichten

Was Vogelgrippe in menschlichen Zellen behindert

10.12.2019 | Biowissenschaften Chemie

Schäden im Leichtbau erkennen durch Ultraschallsensoren

10.12.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics