Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die dunkle Seite des Universums

31.03.2006


Internationales EDELWEISS II-Experiment zur Untersuchung der dunklen Materie wird im Untergrundlabor von Modane, Frankreich, aufgebaut

... mehr zu:
»Detektor »Detektoren »Materie »WIMP

Das Universum ist nach heutigem Erkenntnisstand nur zu einem kleinen Teil für uns sichtbar. Der größte Anteil seiner Masse besteht aus so genannter dunkler Energie und dunkler Materie. Der Untersuchung der dunklen Materie dient das Experiment EDELWEISS II, das zurzeit von einer internationalen Wissenschaftlergruppe in einem Untergrundlabor in den französischen Alpen aufgebaut wird. EDELWEISS II wird am 31. März 2006 eingeweiht.

Die Messungen aus Rotationskurven von Galaxien und der Expansionsrate des Universums legen nahe, dass wir nur einen kleinen Teil der Materie im Kosmos sehen: rund 4 % bilden die sichtbare Materie, aus der die Sonnen der Galaxien bestehen. Der große Rest ist für uns nicht direkt sichtbar und besteht aus dunkler Energie (rund 73 %) und dunkler Materie (rund 23 %). Diese dunkle Materie kann aus sehr leichten Teilchen, beispielsweise Neutrinos, oder aus sehr massereichen, noch unbekannten neuen Teilchen bestehen. So wird im Forschungszentrum Karlsruhe gerade das Experiment KATRIN aufgebaut, um zu klären, wie groß die Masse der Neutrinos ist. Der vermutlich deutlich größere Anteil der dunklen Materie wird jedoch den so genannten WIMPs zugeschrieben. WIMPs (Weakly Interacting Massive Particles = schwach wechselwirkende schwere Partikel) sind geheimnisvolle und bisher spekulative Partikel, die von Modellen der Elementarteilchenphysik vorhergesagt werden und die sich in unserer Milchstraße in großer Anzahl befinden sollten. In einem Untergrundlabor in den französischen Alpen gehen Wissenschaftler aus Frankreich, Deutschland und Russland mit dem Experiment "EDELWEISS II" auf die Suche nach diesen galaktischen WIMPs.


Die Detektoren bestehen aus hochreinen Germaniumkristallen und werden fast auf den absoluten Nullpunkt (auf 0,02 Kelvin, entsprechend -273,13° Celsius) abgekühlt. In diesen Detektoren - so genannten Bolometern - müsste gelegentlich ein WIMP mit einem Germanium-Atomkern zusammenstoßen. Die dabei freiwerdende Energie versetzt den Germaniumkristall in Schwingung; dies löst eine geringe, aber messbare Temperaturerhöhung aus. Außerdem werden durch den Rückstoß des Germaniumkerns elektrische Ladungen erzeugt, die gleichzeitig gemessen werden.

Die erwarteten Zählraten sind äußerst gering (eventuell nur einige Ereignisse pro Jahr und Kilogramm Detektormaterial). Deshalb müssen die Wissenschaftler sehr viel Aufwand betreiben, um unerwünschte Störsignale auszuschließen. EDELWEISS II (EDELWEISS steht für Expérience pour DEtecter Les WIMPs En Site Souterrain) entsteht tief unter der Erde, in einer Experimentierhalle des Untergrundlabors von Modane im Frejus-Tunnel in den französischen Alpen. Hier schirmen 1700 Meter Gestein den größten Teil der kosmischen Strahlen ab.

"Was von der kosmischen Strahlung im Untergrund noch übrig bleibt - weniger als ein Millionstel aller Myonen, die an der Erdoberfläche ankommen - wird von einem 100 m2 großen System von Detektoren des Forschungszentrums Karlsruhe aufgespürt und kann die Messungen nicht mehr stören", erklärt Dr. Klaus Eitel, der im Institut für Kernphysik des Forschungszentrums Karlsruhe für dieses Experiment verantwortlich ist. "Andere Strahlung, die aus dem umliegenden Gestein kommt, wird durch massive Blei- und Polyethylenplatten abgeschirmt. Außerdem haben wir für alle kritischen Bauteile des Experiments Materialien mit extrem niedriger Radioaktivität ausgewählt."

Das Herzstück des Experiments ist ein Kryostat mit 100 Litern Volumen, der die Germaniumdetektoren auf einer Temperatur von 0,02 Kelvin hält. Derzeit ist er mit 8 Bolometern bestückt, in der ersten Jahreshälfte wird die erste Ausbaustufe mit 28 Bolometern vollendet werden. Ab 2007 soll die Anzahl der Detektoren um weitere 90 steigen. Mit einer Gesamtmasse von dann 30 kg Germanium steigert das EDELWEISS II-Experiment die Sensitivität für den Nachweis von WIMPs um einen Faktor 100 und kann damit viele Modellvorhersagen der Elementarteilchenphysik überprüfen.

Die EDELWEISS-Kollaboration besteht aus sechs französischen Forschergruppen, einem russischen Team, dem Forschungszentrum Karlsruhe sowie der Universität Karlsruhe. Sie bringt Spezialisten sehr unterschiedlicher Disziplinen wie Elementarteilchenphysik, Festkörperphysik, Astrophysik und Tieftemperaturphysik zusammen. Das Vorläufer-Experiment (EDELWEISS I) konnte bis 2002 die bis dahin sensitivste Suche nach dunkler Materie durchführen und dabei zeigen, dass die eingesetzte Technik, die nun Basis des EDELWEISS II-Experimentes ist, die Erwartungen erfüllte.

Die Arbeiten werden unterstützt durch das Virtuelle Institut für Dunkle Materie und Neutrinos VIDMAN, das aus dem Impuls- und Vernetzungsfond der Helmholtz-Gemeinschaft gefördert wird.

Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24 000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Inge Arnold | idw
Weitere Informationen:
http://www.fzk.de

Weitere Berichte zu: Detektor Detektoren Materie WIMP

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Emulsionen masschneidern

15.11.2018 | Materialwissenschaften

LTE-V2X-Direktkommunikation für mehr Verkehrssicherheit

15.11.2018 | Informationstechnologie

Daten „fühlen“ mit haptischen Displays

15.11.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics