Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Rekord in der Optik - ein einzelnes Ion als Quantensonde

01.11.2001


Präzise Kontrolle der Wechselwirkung zwischen gespeichertem Ion und optischem Feld als Grundlage für Einphotonenpulse und Quantencomputer


Einer Forschergruppe am Max-Planck-Institut für Quantenoptik (MPQ) in Garching ist es mit Hilfe einer Ionenfalle gelungen, ein einzelnes Calcium-Ion präzise und dauerhaft in einem optischen Feld zu positionieren (nature, 1. November 2001). Mit bisher nicht erreichter Genauigkeit und störungsfrei bestimmten die Wissenschaftler um Prof. Herbert Walther so die räumliche Verteilung des Felds im Nanometerbereich. Mit der exakten Kontrolle der Wechselwirkung zwischen Atom und Strahlungsfeld wurde ein wichtiger wissenschaftlicher Durchbruch erzielt - nicht nur für die Präzisionsmessung optischer Felder, sondern auch für zukünftige Anwendungen. Diese reichen von der Erzeugung von Licht mit exotischen Quanteneigenschaften bis zum Bau effizienter Schaltelemente für einen Quantencomputer.

Die Wechselwirkung zwischen Licht und Materie ist von grundlegender Bedeutung für das Verständnis von Vorgängen im atomaren Bereich. In der makroskopischen Welt tritt nur die über eine große Anzahl von Atomen gemittelte Wirkung des Lichtfelds in Erscheinung. Die räumliche Verteilung des Lichts im atomaren Bereich spielt dabei keine Rolle. In den vergangenen Jahren wurden jedoch die experimentellen Methoden so weit verbessert, dass man auch einzelne Atome untersuchen kann. Auf welche Weise ein einzelnes Atom mit Licht in Wechselwirkung tritt, hängt von den Eigenschaften des Lichtfelds in seiner unmittelbaren Umgebung ab. Deshalb kann ein einzelnes Atom dazu benutzt werden, Informationen über die mikroskopische Struktur von Lichtfeldern mit bisher unerreichbarer Auflösung zu erhalten. Voraussetzung ist allerdings, dass man die Position des einzelnen Atoms genauestens kontrollieren kann. Schon eine Distanz von 100 Nanometern kann zwischen maximaler Lichtintensität und völliger Dunkelheit entscheiden. Doch wie kann man ein einzelnes Atom so genau festhalten, ohne dabei das Lichtfeld selbst zu stören?


Abb. 1: Die im Experiment verwendete Ionenfalle: Das Ion wird entlang der Fallenachse zwischen die Spiegel geschoben. Ein Laser erzeugt das Feld zwischen den Spiegeln, das Fluoreszenzlicht wird von der Seite beobachtet


Gerhard R. Guthöhrlein, Matthias Keller, Kazuhiro Hayasaka, Wolfgang Lange und Herbert Walther vom Max-Planck-Institut für Quantenoptik ist es gelungen, dieses Problem zu lösen. Sie verwendeten für ihr Experiment ein einzelnes ionisiertes Calcium-Atom, das im Radiofrequenzfeld einer Ionenfalle festgehalten wurde (Abb.1). Mit einem Laser kühlten sie das Ion auf eine Temperatur von weniger als ein Tausendstel Grad über dem absoluten Nullpunkt ab; seine Bewegung in der Falle ist dann auf einen Bereich von nur noch 60 Nanometer beschränkt. Dies ist ein Bruchteil der Wellenlänge der vom Calcium-Ion absorbierten ultravioletten Strahlung von 397 Nanometer, so dass sich auch Strukturen weit unterhalb dieser Skala optimal auflösen lassen.

Eine Radiofrequenzfalle hat den entscheidenden Vorteil, dass sie die Wechselwirkung zwischen Ion und Lichtfeld in keiner Weise stört. Das gefangene Ion wird darin zu einer perfekten Nanosonde, die nach dem Prinzip der Nahfeldmikroskopie arbeitet: Durch Absorption von Strahlung aus seiner unmittelbaren Umgebung nimmt das Ion Informationen über die lokale Lichtintensität auf. Über das anschließend vom Ion abgestrahlte Fluoreszenzlicht kann man diese Größe messen - mehr Fluoreszenzlicht bedeutet eine höhere Intensität des Strahlungsfelds. Die Max-Planck-Wissenschaftler haben die Messung an verschiedenen Stellen im Lichtfeld wiederholt, die so gewonnenen Intensitätswerte zu einem Bild zusammengesetzt und damit die Umgebung des Ions mit atomarer Auflösung sichtbar gemacht.

Im Experiment wurde ein Lichtfeld untersucht, das sich zwischen zwei hochreflektierenden, nur 6 Millimeter voneinander entfernten Miniaturspiegeln bei Einstrahlung von Laserlicht ausbildet (vgl. Abb. 1). Mit dem Calcium-Ion konnten die Forscher - wie mit einer Nanokamera - erstmals die charakteristische Intensitätsverteilung dieses stark lokalisierten Lichtfelds in allen drei Raumrichtungen direkt abbilden (Abb. 2). So gelang ihnen die bislang genaueste Messung eines Strahlungsfelds.


Abb. 2: Transversale Feldverteilung zwischen den Spiegeln, aufgenommen mit einem einzelnen Calcium-Ion. Je nach Spiegelabstand werden verschiedene Zustände (a, b) angeregt, die sich in der Zahl der Intensitätsmaxima unterscheiden. Die schwarzen Höhenlinien zeigen die theoretisch berechneten Werte


Das in einer Ionenfalle festgehaltene atomare Teilchen lässt sich jedoch nicht nur dazu einsetzen, die mikroskopische Struktur eines Lichtfelds aufzulösen. Vielmehr hat man umgekehrt auch die Möglichkeit, ein derart "fixiertes" Ion für praktisch unbegrenzte Zeit einem genau festgelegten Lichtfeld auszusetzen, was bei freien Atomen durch deren zufällige Bewegung verhindert würde. Damit lässt sich Licht mit Eigenschaften erzeugen, die über den Rahmen der klassischen Physik hinausgehen und mit den Begriffen der Quantenmechanik beschrieben werden müssen. "Wir könnten beispielsweise mit der im MPQ verwendeten Apparatur Pulse produzieren, die aus exakt einem Lichtquant bestehen. Das wäre eine hervorragende Grundlage für das abhörsichere Übertragen von Informationen," sagt Prof. Herbert Walther, der Leiter des Forscherteams und Direktor am Max-Planck-Institut für Quantenoptik. Und:."Der größte Nutzen könnte sich für die Entwicklung eines Quantencomputers auf atomarer Basis ergeben. Die präzise Steuerung der Wechselwirkung mit Licht ermöglicht einen einfachen Austausch von Quanteninformation zwischen den Ionen und ist den bisher vorgeschlagenen Methoden bei weitem überlegen."


Mit ihrer Ein-Ion-Nanosonde sind die Quantenphysiker in Garching einem universellen Schalter für die Quantenzustände von Atomen einen großen Schritt näher gekommen.


PDF-Version...


Weitere Informationen erhalten Sie von:

Prof. Dr. Herbert Walther
Max-Planck-Institut für Quantenoptik
85748 Garching
Tel.: 0 89 / 3 29 05 - 7 04
Fax: 0 89 / 3 29 05 - 3 14
E-Mail: herbert.walther@mpq.mpg.de

Dr. Wolfgang Lange
Max-Planck-Institut für Quantenoptik
85748 Garching
Tel.: 0 89 / 3 29 05 - 2 98
Fax: 0 89 / 3 29 05 - 2 00
E-Mail: wolfgang.lange@mpq.mpg.de

| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de/mpq_d.html

Weitere Berichte zu: Atom Calcium-Ion Ionenfalle Lichtfeld Wechselwirkung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics