Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefesselte Elektronen

27.03.2006


Max-Planck Wissenschaftler beweisen, dass Elektronen Zustände oberhalb des Vakuum-Niveaus besetzen.


Die linke Abbildung, zeigt die Messergebnisse der Physiker am Max-Planck-Institut für Mikrostrukturphysik: Die Peaks in ihren Messungen bilden einen Teil der energetischen Zustände ab, in denen sich Elektronen befinden. Rechts von der gestrichelten Linie (mit ATP - Above Threshold Photoemission) sollten sie sich eigentlich aus dem Festkörper lösen. Dass auch dort Signale zu beobachten sind, zeigt: Die Elektronen besetzen Zustände oberhalb des Vakuum-Niveaus. Die rechte Abbildung zeigt die Ergebnisse der Messungen schematisch. IP n = 1 und IP n = 2 kennzeichnen die Zustände, in denen die Elektronen frei sind, aber immer noch Kontakt zum Metall halten. Die senkrechten Linien stellen Anregungen jeweils eines Elektrons durch mehrere Photonen in Zustände dar, in denen sie sich völlig vom Metall gelöst haben (ATP). Bild: Max-Planck-Institut für Mikrostrukturphysik



Wenn Saudi-Arabien Fußballweltmeister wird, ist das eine Sensation. Für noch mehr Aufregung aber könnte in dem Turnier eine schlichte Flanke, sagen wir von Michael Ballack, sorgen - wenn der Ball einige Zentimeter von seiner Fussspitze entfernt in der Luft hängen bliebe, heftig auf und ab zitterte, und erst nach einem weiteren Tritt über den Platz fegte. In der Quantenwelt ist so etwas möglich: Wissenschaftler des Max-Planck-Instituts für Mikrostrukturphysik in Halle haben Elektronen in einem Kupferplättchen jetzt mit Laserlicht einen Kick gegeben, so dass sie ins Vakuum hätten sausen müssen. Als seien sie gefesselt konnten sie sich aber nicht aus dem Metall lösen. Für einige Elektronen könnte das zum Beispiel bedeuten, dass sie knapp über der Metall-Oberfläche schweben. Damit haben die Physiker bewiesen, dass sich Elektronen tatsächlich in Zuständen aufhalten, die sie bislang nur für virtuell hielten. Ganz nebenbei erweitern die Forscher mit ihren Experimenten Einsteins nobelpreisgekrönte Theorie der Photoemission. (Physical Review Letters, 3. März 2006)

... mehr zu:
»Elektron »Laser »Physik


Auf Computerchips, Laser und Neonröhren müssten wir heute verzichten, wenn Physiker nicht die elektronischen Eigenschaften der Stoffe erforscht hätten, die sie in der Natur finden oder in Labors herstellen. Dabei gehen sie immer der Frage nach, wo sich die Elektronen in diesen Substanzen aufhalten oder, physikalisch gesprochen, mit welcher Energie sie um die Atomkerne schwirren - und wie sie ihnen einen energetischen Schub verpassen können. In Metallen bedienen sich die Wissenschaftler dafür gerne der Photoelektronen-Spektroskopie. Die Methode beruht auf der Theorie, für die Albert Einstein 1921 den Nobelpreis erhielt. Demnach kann ein Lichtstrahl ein Elektron nur aus einem Festkörper lösen, wenn er eine bestimmte Farbe, sprich mindestens eine bestimmte Energie, hat.

Selbst einem so gut untersuchten Metall wie Kupfer können Physiker damit heute noch Geheimnisse entlocken. Francesco Bisio und Miroslav Nývlt, Gastforscher am Max-Planck-Institut für Mikrostrukturphysik in Halle, haben jetzt in einem Kupferplättchen Elektronen in Zuständen beobachtet, die sie bislang nur für mathematische Konstrukte der Quantentheorie hielten. Diese Zustände liegen oberhalb des Vakuumniveaus - jener Energie, die ein Elektron mindestens braucht, um dem Metallgitter zu entkommen und in die Freiheit zu sausen. Die Elektronen entwischten aber nicht, sondern blieben an das Metall gefesselt.

"Meine beiden Kollegen haben jetzt gezeigt, dass diese Zustände nicht nur virtuell, sondern real sind - wenn auch sehr kurzlebig", sagt Jürgen Kirschner, Direktor am Max-Planck-Institut in Halle und Leiter der Gruppe, in der Bisio und Nyvlt gearbeitet haben. Dass Elektronen tatsächlich auch solche ungewöhnlichen Zustände annehmen, hat mit einer Eigenheit der Quantentheorie zu tun: In ihr ist beinahe alles möglich - auch dass Michael Ballacks Fuß den Ball nicht los wird oder Saudi-Arabien die Weltmeisterschaft gewinnt. Allerdings: Die Wahrscheinlichkeit für viele denkbare Ereignisse ist nur verschwindend klein. So auch dafür, dass Physiker Elektronen ins energetische Nirgendwo befördern können. Ob sie das schaffen, hängt auch davon ab, mit wie vielen Photonen sie die Elektronen befeuern, wie oft sie ihnen also einen Kick verpassen.

Ist die Zahl der Photonen, also die Intensität des eingestrahlten Lichtes, nur groß genug, interagieren einige Photonen auch so mit den Elektronen, dass diese in einem Zustand landen, in dem sie dem Metall eigentlich entwischen müssten - aber doch nicht loskommen. Genau diese Erkenntnis kollidiert mit Einsteins Theorie des Photoeffekts. Einstein stellte nämlich fest, dass nur die Farbe (entsprechend die Energie) des Lichts und nicht seine Intensität darüber entscheidet, ob es Elektronen aus einem Metall katapultieren kann. Albert Einstein kannte jedoch noch keine Laser. Sie liefern Lichtpulse von so hoher Intensität, dass Phänomene auftreten, die Physiker Effekte höherer Ordnung oder nichtlineare Effekte nennen.

Pikanterweise verwenden die Hallenser Physiker Laserlicht, dessen Energie nach Einstein nicht ausreicht, um ein Photon aus dem Kupfer zu schlagen. Die Elektronen fangen aber mehrere Photonen gleichzeitig ein und sammeln so die nötige Energie, um dem Metall zu entwischen. Dieses Phänomen ist sehr unwahrscheinlich. Francesco Bisio und Miroslav Nyvlt konnten es nur beobachten, weil sie sehr intensive Lichtpulse einstrahlten. "Ein kurioser Gedanke: Nichtlineare Effekte der Quantentheorie ermöglichen Phänomene, die die klassische Physik als lineare Effekte darstellte und die seit Einstein und Planck als physikalische Unmöglichkeit gelten", sagt Kirschner.

Neben der hohen Intensität nutzten Bisio und Nyvlt einen Trick: Sie ballerten nicht wahllos mit dem Laser auf die Kupferoberfläche; vielmehr wählten sie sorgfältig den Winkel, in dem sie die Lichtwellen auf das Metall treffen ließen. Entscheidend war dabei die Schwingungsrichtung des Lichts, dessen Wellen in einem Laser alle parallel laufen. Erreichten die Lichtwellen das Kupfer in einem bestimmten Winkel, gaben sie den Elektronen zwar einen kräftigen Schub. Der beschleunigte die Elektronen aber nicht von der Metalloberfläche weg, sondern parallel zu ihr. Die Elektronen bewegten sich also heftig, jedoch nur in einer Ebene über dem Kupferplättchen. Um im Bild zu bleiben: Michael Ballack muss sich nicht wundern, wenn seine Flanke seinen Kollegen Miroslav Klose nicht erreicht, wenn er in den Himmel über dem Stadion schießt.

Originalveröffentlichung:

Francesco Bisio, Miroslav Nývlt, Jiri Franta, Hrvoye Petek und Jürgen Kirschner
Mechanisms of High-Order Pertubative Photoemission from Cu(001)
Physical Review Letters, 3 February 2006-03-24

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Elektron Laser Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen
15.02.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen
14.02.2019 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen.

In heutigen Datenspeichern müssen magnetische Domänen mit Hilfe eines externen Magnetfeld umgeschaltet werden, welches durch elektrischen Strom erzeugt wird....

Im Focus: Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen

Und können dadurch mit ihrer neu entwickelten Mikroskopiemethode Orbitale einzelner Moleküle in verschiedenen Ladungszuständen abbilden. Die internationale Forschergruppe der Universität Regensburg berichtet über ihre Ergebnisse unter dem Titel “Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators” in der weltweit angesehenen Fachzeitschrift ,,Nature‘‘.

Sie sind die Grundbausteine der uns umgebenden Materie - Atome und Moleküle. Die Eigenschaften der Materie sind oftmals jedoch nicht durch diese Bausteine...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: Universität Konstanz gewinnt neue Erkenntnisse über die Entwicklung des Immunsystems

Wissenschaftler der Universität Konstanz identifizieren Wettstreit zwischen menschlichem Immunsystem und bakteriellen Krankheitserregern

Zellbiologen der Universität Konstanz publizieren in der Fachzeitschrift „Current Biology“ neue Erkenntnisse über die rasante evolutionäre Anpassung des...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zum Thema Desinformation in Online-Medien

15.02.2019 | Veranstaltungen

FfE-Energietage 2019 - Die Energiewelt heute und morgen vom 1. bis 4. April 2019 in München

15.02.2019 | Veranstaltungen

Deutscher Fachkongress für kommunales Energiemanagement: Fokus Energie – Architektur – BauKultur

13.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Katalysatoren - Fluktuationen machen den Weg frei

15.02.2019 | Biowissenschaften Chemie

Berührungsgeschützt, kompakt, einfach: Rittal erweitert Board-Technologie

15.02.2019 | Energie und Elektrotechnik

Wie kann digitales Lernen gelingen? Lern-Prototypen werden auf der didacta vorgestellt

15.02.2019 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics