Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationales Forscherteam unter Tübinger Leitung entdeckt ungewöhnliches Doppelsternpaar

23.03.2006


Weißer Zwerg hat einen kühlen Begleiter


Einem internationalen Forscherteam unter Leitung von Dr. Thorsten Nagel vom Institut für Astronomie und Astrophysik gelang der Nachweis eines ungewöhnlichen engen Doppelsternsystems. Es besteht aus einem ausgebrannten Weißen Zwerg mit seltener chemischer Zusammensetzung und einem massearmen Stern.

Gemeinsam mit Kollegen der Universität Göttingen beobachteten die Tübinger Astrophysiker das Doppelsternsystem mit dem Namen SDSSJ212531.92-010745.9 im Herbst letzten Jahres und maßen dabei die Schwankung seiner Helligkeit. Zum Einsatz kamen hierbei die hochmodernen Spiegelteleskope der Universitäten Tübingen und Göttingen.


Der ausgebrannte Weiße Zwerg ist ein sogenannter PG1159 Stern. Dieser heiße Stern mit Oberflächentemperaturen zwischen 75000°C und 200000°C zeichnet sich durch eine äußerst ungewöhnliche chemische Zusammensetzung seiner Atmosphäre aus. Im Gegensatz zu den meisten Sternen ist diese nahezu frei von Wasserstoff und wird stattdessen von Helium, Kohlenstoff und Sauerstoff dominiert. Das besondere an einem Weißen Zwerg ist, dass dieser kurz vor dem Verglühen ein letztes Mal seine Kernfusionsenergiequelle zündet, um erneut zu einem so genannten Roten Riesen zu werden und am Ende als Weißer Zwerg zu verglühen. Ein PG1159 Stern befindet sich in der Übergangsphase vom wiedergeborenen Roten Riesen hin zum Weißen Zwerg. Zurzeit sind nur 40 derartige Sterne bekannt.

Da das Spektrum des untersuchten Weißen Zwergs nicht nur die für PG1159 Sterne typischen Absorptionslinien des Kohlenstoffs zeigt, sondern zusätzlich Emissionslinien des Wasserstoffs, hatte das Forscherteam bald die Vermutung, dass das Licht des PG1159 Sterns vom Licht eines weiteren Objektes überlagert wird. Daher führten die Tübinger und Göttinger Astrophysiker eine Beobachtungskampagne mit ihren eigenen Teleskopen durch und bestimmten die Helligkeit des Objektes. Sie fanden eine regelmäßige Helligkeitsvariation von etwa 25% mit einer Periode von knapp 7 Stunden. Weitergehende Analysen zeigten, dass es sich bei der beobachteten Periode nur um die Bahnperiode (Umlaufdauer) eines Doppelsternpaares handeln konnte.

Das entdeckte Doppelsternsystem besteht aus einem etwa 90000°C heißen, etwa 0,6 Sonnenmassen schweren PG1159 Stern und einem 3000°C kühlen, etwa 0,4 Sonnenmassen schweren Begleiter. Die Oberfläche des Begleitsterns wird infolge der intensiven Bestrahlung durch den PG1159 Stern auf etwa 8200°C aufgeheizt, aus seiner Atmosphäre stammt das beobachtete Emissionslinienspektrum des Wasserstoffs. Der Abstand der beiden Sterne voneinander ist so klein (etwa 1,4 Millionen Kilometer), dass das gesamte System beinahe in unserer Sonne Platz hätte. Aufgrund dieser extrem geringen Distanz spricht man von einem engen Doppelsternsystem, und in der Gruppe der PG1159 Sterne ist es das erste überhaupt gefundene.

Die Entdeckung dieses Doppelsternsystems eröffnet den Forschern die Möglichkeit, die Massen der beiden Sterne direkt zu bestimmen. Dies erlaubt es, bestehende Theorien über die Sternentwicklung zu überprüfen und zwischen verschiedenen Hypothesen zu unterscheiden. Dafür muss das Spektrum des Sterns über eine Umlaufperiode hinweg beobachtet werden. Die geringe Helligkeit des Objekts erfordert hierzu jedoch die Sehkraft eines der großen 8m Teleskope der europäischen Südsternwarte in Chile.

Zu klären bleibt allerdings die Frage nach der Entstehung dieses Doppelsternsystems. Vor astronomisch gesehen nicht allzu langer Zeit, wenige hunderttausend Jahre, befand sich der jetzige PG1159 Stern in seiner Rote-Riese-Phase und hatte einen Durchmesser von einigen hundert Sonnenradien. Sein Begleitstern lief damals womöglich fast innerhalb seiner Atmosphäre um, wurde dabei stark abgebremst und näherte sich so bis auf einen Abstand von knapp zwei Sonnenradien, der heutigen Entfernung, an. Wie diese Entwicklung aber im Detail ablief, und wie der Begleitstern dies überlebt haben kann, ist durch weitergehende Untersuchungen des Objektes noch zu erforschen.

Die wissenschaftliche Arbeit zu den Forschungsergebnissen wurde im März 2006 in der Fachzeitschrift "Astronomy & Astrophysics" (Vol. 448, Letter 25) veröffentlicht.

Kontakt und nähere Informationen:
Dr. Thorsten Nagel
Institut für Astronomie und Astrophysik
Sand 1
Universität Tübingen
Telefon: (07071) 29-78612
Fax: (07071) 29-3458
nagel@astro.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Berichte zu: Astrophysik Doppelsternpaar Doppelsternsystem

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics