Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Würfelt die Natur beim Nervenwachstum?

23.03.2006


Untersuchungen Leipziger Physiker um Prof. Dr. Josef Käs zeigen: Wachstumsverhalten von Neuriten wird durch den Zufall bestimmt. Nervenzellen nutzen störendes Rauschen zur Signalverstärkung.


Eine gefärbte Nervenzelle. Rechts unten der vergrößerte Ausschnitt wurde näher untersucht



Einer der wichtigsten Schritte in der Entwicklung einer befruchteten Eizelle zum fertigen Menschen ist die richtige und verlässliche Vernetzung des zentralen Nervensystems. "Daher scheint es geradezu unerlässlich dass die Natur bei diesem entscheidenden Schritt jeden zufälligen und unkontrollierten Prozess ausschließen müsste.", meint Prof. Dr. Josef Käs, Leiter der Abteilung Physik der weichen Materie am Institut für Experimentelle Physik I der Universität Leipzig. "Um hier zu verlässlichen Aussagen zu kommen, untersuchten wir das Wachstumsverhalten von Neuriten."

... mehr zu:
»Physik »Rauschen


Von besonderem Interesse war dabei, wie die Natur ein System erschaffen kann, das nicht von zufälligen Fluktuationen und Rauschen beeinträchtigt wird. Denn je kleiner ein Teilchen ist, umso stärker wird es vom so genannten thermischen Rauschen beeinflusst, auch bekannt als Brown’sche Bewegung. Sie kommt zustande durch Atome und Moleküle, die sich ständig und unkontrolliert anstoßen, also gewissermaßen herumgewürfelt werden.

"Zunächst stellten wir fest, dass auch eine sich fortbewegende Nervenzelle solch zufällige Fluktuationen erfährt", erklärt Timo Betz, Physiker aus der Arbeitsgruppe um Prof. Käs. "Dann konnten wir mit Hilfe der Theorie stochastischer Systeme die Stärke des Rauschens bestimmen." Es zeigte sich, dass Nervenzellen nicht nur mit diesem scheinbar störenden Rauschen umgehen, sondern es vermutlich sogar gezielt modifizieren können. "Der mögliche Sinn einer solchen Modifikation könnte darin liegen, Rauschen gezielt zu nutzen, um die schwachen Signale, welche die Zellen zu ihrem Ziel leiten, zu verstärken.", so Betz. Das System wird damit robuster und weniger anfällig gegen Störungen.

In der Natur werden ähnliche Systeme beispielsweise beim Hörsinn genutzt. Hier wird die richtige Stärke eines Rauschen zur Signal-, d.h. Tonverstärkung genutzt. "Auch wenn es der Intuition zu widersprechen scheint, nutzt die Natur also den Zufall. Quasi durch Würfeln schafft sie einen Mechanismus, der das Hören bzw. in unserem Fall, das Detektieren von Wachstumssignalen besser möglich macht als ein kontrolliertes System.", erläutert Betz weiter.

Die Leipziger Physiker veröffentlichten ihre Entdeckung jetzt in den Physical Review Letters.

weitere Informationen:
Prof. Dr. Josef A. Käs
Telefon: 0341 97-32470
E-Mail: jkaes@physik.uni-leipzig.de

Dr. Bärbel Adams | idw
Weitere Informationen:
http://www.uni-leipzig.de/~pwm
http://www.uni-leipzig.de

Weitere Berichte zu: Physik Rauschen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hochgeladenes Ion bahnt den Weg zu neuer Physik
11.12.2019 | Max-Planck-Institut für Kernphysik

nachricht Vom Staubkorn zum Planeten – Rätsel um Kollisionsbarriere gelöst
11.12.2019 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Hefe-Spezies in Braunschweig entdeckt

12.12.2019 | Biowissenschaften Chemie

Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung

12.12.2019 | Medizin Gesundheit

Urbane Gärten: Wie Agrarschädlinge von Städten profitieren

12.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics