Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Anziehung trotz Abstoßung - Clusterbildung der anderen Art

13.03.2006


Je nach Druckverhältnissen liegen die Cluster (siehe Vergrößerung in der Mitte) abstoßender Teilchen in flüssiger Anordnung (links) oder als Kristall (rechts) vor (grafische Darstellung der Computer-Simulation).


Selbst bei gegenseitiger Abstoßung können Materieteilchen in einer Lösung zusammenklumpen. Die Bedingungen, unter denen diese scheinbar widersprüchliche Clusterbildung erfolgt, wurden im Rahmen eines Projekts des Wissenschaftsfonds FWF gefunden und jetzt veröffentlicht. Diese Ergebnisse aus der theoretischen Physik haben grundlegende Bedeutung für das Verständnis der Wechselwirkung zwischen Polymeren - und etablieren den noch jungen Wissenschaftszweig der "Weichen Materie" in Österreich.


Ob Milch oder Mayonnaise, ob Farben oder Tinte, ob Proteine oder DNA - sie alle gehören zur "Weichen Materie". Ihre physikalischen Eigenschaften werden erst seit wenigen Jahren systematisch analysiert - mit oftmals überraschenden Ergebnissen. Ein solches Resultat wurde jetzt von der Arbeitsgruppe um Prof. Gerhard Kahl, Institut für Theoretische Physik, Technische Universität Wien gefunden und veröffentlicht.

Harte Fakten aus Weicher Materie


"Rein intuitiv betrachtet, können in einer Flüssigkeit Teilchen nur dann zusammenklumpen, wenn sie sich anziehen," erläutert Prof. Kahl, "jetzt aber konnten wir zeigen, dass dies nicht immer so sein muss. Auch Teilchen, die einander völlig abstoßen, können Cluster bilden." Die dafür notwendigen Voraussetzungen können in einer bestimmten Art der "Weichen Materie", den kolloidalen Dispersionen, gegeben sein. In solchen Systemen sind verhältnismäßig große Teilchen (z.B. Polymere) in einem Lösungsmittel gelöst, das aus deutlich kleineren Teilchen aufgebaut ist.

Für solche Lösungen hat das Team mit KollegInnen der Universitäten Wien und Düsseldorf nun Berechnungen durchgeführt, die eindeutig zeigen: Stoßen sich Teilchen gegenseitig ab, dann können sie trotzdem zusammenklumpen, wenn zwei Voraussetzungen erfüllt sind. Erstens müssen sich die Teilchen gegenseitig überlappen können, und zweitens müssen die abstoßenden Kräfte mit zunehmender Entfernung zwischen den Teilchen sehr rasch geringer werden.

Sind diese Bedingungen erfüllt, dann kommt es zu dem scheinbar widersprüchlichen Verhalten der Teilchen. Ihre überraschenden Voraussagen konnten Mag. Bianca Mladek und Dr. Dieter Gottwald, Mitarbeiter von Prof. Kahl, mit komplexen Computersimulationen bestätigen. Die Übereinstimmung aus Vorhersage und Simulation überzeugte dann auch die Gutachter der renommierten Fachzeitschrift Physical Review Letters, in der die Arbeit nun veröffentlicht wurde.

Geordnete Verhältnisse unter Druck

Weitere unerwartete Ergebnisse konnten für das Verhalten der Teilchen unter Druckeinwirkung gefunden werden. "Unter höherem Druck", so Prof. Kahl, "ordnen sich die Cluster in Kristallen an. Noch mehr erstaunt haben uns die Ergebnisse zusätzlicher Untersuchungen. Diese zeigen nämlich, dass bei weiterer Kompression der Abstand zwischen den kristallin geordneten Clustern konstant bleibt, eine Eigenschaft, die durch die Ansammlung von mehr und mehr Teilchen in den Clustern ermöglicht wird." Diese Ergebnisse stehen im Gegensatz zum Verhalten anderer geordneter Systeme wie metallischer Festkörper, in denen sich unter Druck die Gitterabstände verringern.

Solche Berechnungen waren auf Grund der hohen Komplexität kolloidaler Dispersionen nur durch mathematische Tricks möglich. Dazu Prof. Kahl: "Die statistische Mechanik ist Grundlage unserer Berechnungen an Weicher Materie. Allerdings stellt die große Zahl an Freiheitsgraden der größeren Teilchen der Dispersionen ein Problem dar. Durch geeignete Mittelung konnten wir die Zahl der Freiheitsgrade drastisch reduzieren, sodass die Berechnung des Verhaltens der Teilchen nur noch von einer kleinen Zahl von Koordinaten abhängt."

Für Prof. Kahl sind die so gewonnenen und z. T. sehr unerwarteten Ergebnisse illustrative Beispiele dafür, dass die Natur eine große Vielfalt an Lösungen anbietet, um Teilchen energetisch optimal anzuordnen - und viele dieser Lösungen sind noch unbekannt. Das Projekt des FWF trägt nicht nur dazu bei, der Natur einige dieser Geheimnisse zu entlocken, sondern hilft auch, den noch neuen Forschungsbereich der "Weichen Materie" in Österreich zu etablieren.

Originalpublikation: Formation of Polymorphic Cluster Phases for a Class of Models of Purely Repulsive Soft Spheres. B. M. Mladek, D. Gottwald, G. Kahl, M. Neumann und C. N. Likos. Physical Review Letters 96, 045701 (2006). DOI: 10.1103/PhysRevLett.96.045701

Wissenschaftlicher Kontakt:
Prof. Dr. Gerhard Kahl
Institut für Theoretische Physik und Center for Computational Materials
Science (CMS)
Technische Universität Wien
Wiedner Hauptstraße 8 - 10
A-1040 Wien
M +43 / 699 / 884 657-14
E gkahl@tph.tuwien.ac.at

Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Weyringergasse 35
A-1040 Wien
T +43 / 1 / 505 67 40-36
E bernhardt@fwf.ac.at

Redaktion & Aussendung:
PR&D - Public Relations for Research & Development
Campus Vienna Biocenter 2
A-1030 Wien
T +43 / 1 / 505 70 44
E contact@prd.at

Michaela Fritsch | www.prd.at
Weitere Informationen:
http://www.fwf.ac.at
http://www.tph.tuwien.ac.at

Weitere Berichte zu: Clusterbildung Dispersion Physik Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmische Katastrophe bestätigt Einsteins Relativitätstheorie
10.07.2020 | Max-Planck-Institut für Physik

nachricht Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen
09.07.2020 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics