Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnellste Messung von Molekülvibrationen

03.03.2006


Heidelberger Max-Planck-Forscher und britische Wissenschaftler verfolgen die Bewegung von Atomkernen in Molekülen mit einer Rekord-Zeitauflösung


Rohdaten der gemessenen UV-Strahlung, die von Wasserstoff (H2)- bzw. Deuteriummolekülen (D2) unter dem Einfluss eines starken Laserpulses emittiert wird. Zunehmende Pixelnummer entspricht abnehmender UV-Wellenlänge. Die stärkere Intensität des D2-Signals spiegelt die langsamere Vibration im Vergleich zu H2 wider. Bild: Imperial College London



Werden Atome oder Moleküle von einem kurzen intensiven Laserpuls getroffen, geben sie hochfrequente Strahlung im extremen UV-Bereich ab. In Molekülen wird dieser Prozess von den Schwingungen der Atome beeinflusst. Vergleicht man die Spektren von unterschiedlich schweren, aber sonst gleichartigen Molekülen (Isotopen), dann kann man aus der gemessenen Strahlung auf die Bewegung der Atome schließen. Mit dieser Methode gelang es dem Forscherteam erstmals, Informationen über die Zeitentwicklung des Moleküls zu erhalten - und zwar schon mit einzelnen, extrem kurzen Laserpulsen (Science Express, 2. März 2006).

... mehr zu:
»Elektron »Laserpuls »Molekül


Die Messung von zeitabhängigen Abläufen in Molekülen wurde in den letzten Jahrzehnten durch die ständige Verbesserung der Lasertechnologie revolutioniert. Einen gewaltigen Fortschritt bedeuteten Femtosekundenpulse: Extrem kurze Laserblitze, die nur wenige Tausendstel einer Billiardstel Sekunde (10-15 s) dauern. Das Licht legt in dieser Zeit nur tausendstel Millimeter zurück. Zum Vergleich: Während der normalen Verschlusszeit einer Fotokamera (1/60 s) schafft Licht die Strecke zwischen Berlin und New York. Mit Femtosekundenpulsen konnten Nobelpreisträger Ahmed Zewail und andere vor etwa 20 Jahren erstmals den Zeitverlauf chemischer Reaktionen in Echtzeit verfolgen. Ihre Experimente basierten stets auf dem Pump-Probe-Prinzip: Ein Laserpuls startet eine Reaktion (Pump), ein zweiter Puls macht eine Momentaufnahme des Moleküls (Probe). "Filmen" kann man die zeitlichen Vorgänge im Molekül, indem man hintereinander viele Einzelaufnahmen mit unterschiedlichen Verzögerungszeiten zwischen Pumppuls und Probepuls herstellt.

Doch die bislang schnellsten Messungen zur Moleküldynamik wurden jetzt mit einem neuen Messverfahren am Imperial College London durchgeführt (Blackett Laboratory Laser Consortium, Direktor Prof. Jon Marangos). Die Grundlage dafür bildet eine Theorie, die von Forschern der Max-Planck-Gesellschaft um Dr. Manfred Lein ausgearbeitet wurde. In den neuartigen Experimenten wird nur ein einzelner Femtosekunden-Laserpuls auf die Probe geschickt. Dieser Puls erzeugt ein elektrisches Feld, das ausreicht, um den bestrahlten Molekülen zu gewissen Zeitpunkten ein Elektron zu entreißen. So wird in dem aus dem Gleichgewicht geratenen Molekülrumpf ein Bewegungsablauf angestoßen. Weil das Feld des Laserpulses periodisch die Richtung wechselt, kann es das freie Elektron zum Ion zurücktreiben. So können sich Elektron und Molekülrumpf wieder vereinigen - und dabei ein hochfrequentes UV-Photon aussenden. Dieser Prozess - und damit die Intensität der UV-Emission - wird um so unwahrscheinlicher, je weiter sich das Molekül in der Zwischenzeit von der Anfangskonfiguration entfernt hat. In der Sprache der Quantenmechanik: Die Wahrscheinlichkeit für Rekombination hängt vom Überlapp zwischen Anfangs- und Endwellenfunktion der Atombewegung ab. Durch Messung der Intensität des UV-Lichtes kann man also auf die zeitliche Entwicklung des Moleküls schließen.

Leider wird die Intensität der ausgesandten UV-Strahlung neben der Kerndynamik noch von vielen anderen Faktoren beeinflusst, zum Beispiel von der Wahrscheinlichkeit für die Ionisation des Moleküls. Dieses Problem umgingen die Forscher mit einem Trick: Sie betrachteten die Spektren zweier verschieden schwerer Isotope eines Moleküls. Isotope haben weitgehend identische Eigenschaften; sie unterscheiden sich nur durch die Masse der Atomkerne und führen deshalb unterschiedlich schnelle Kernbewegungen aus. Die jetzt veröffentlichten Experimente vergleichen zum einen die Spektren von Wasserstoffmolekülen (H2) mit denen doppelt so schwerer Deuteriummoleküle (D2) (s. Abb.), zum anderen werden die Spektren der Methanisotope CH4 und CD4 gegenübergestellt.

Bei der Messung der zeitlichen Entwicklung des Moleküls nutzten die Wissenschaftler einen glücklichen Umstand: Schon ein einziger Laserpuls erzeugt ein ganzes Spektrum an UV-Frequenzen, wobei die Frequenz des UV-Lichtes der Zeitdauer zugeordnet werden kann, die ein zurückkehrendes Elektron "im Freien" verbracht hat. Die höchsten Frequenzen stammen von den Elektronen, die am längsten unterwegs waren. Die Zeitauflösung der Messung ist also durch die Differenz benachbarter UV-Frequenzen im Spektrum bestimmt und liegt bei etwa einem Zehntel einer Femtosekunde. Durch Zuordnung von Frequenz und Zeit kann man aus den Spektren zweier unterschiedlicher Isotope die Zeitentwicklung rekonstruieren. Diese Aufgabe wurde im Falle des Wasserstoffexperiments mit Hilfe eines aufwändigen genetischen Algorithmus per Computer erledigt. Die genaue Analyse der Methandaten ist wesentlich komplizierter und steht noch aus.

Ein wesentlicher Vorteil der neuen Methode gegenüber dem traditionellen Pump-Probe-Prinzip besteht darin, dass schon ein einzelner Laserpuls genügt, um ein ganzes Intervall an Verzögerungszeiten abzutasten. Das vielfache Wiederholen des Experiments mit unterschiedlichen Pump-Probe-Abständen entfällt. Die Erstautorin der Originalveröffentlichung, Dr. Sarah Baker, meint: "We are very excited by these results, not only because we have ‘watched’ motion occurring faster than was previously possible, but because we have achieved this using a compact and simple technique that will make such study accessible to scientists around the world."

Originalveröffentlichung:

S. Baker, J. Robinson, C.A. Haworth, H. Teng, R. A. Smith, C.C. Chirilã, M. Lein, J.W.G. Tisch, and J.P. Marangos
Probing proton dynamics in molecules on an attosecond timescale
Science Express, 2 March 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Elektron Laserpuls Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kartographie eines fernen Sterns
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

nachricht Organische Halbleiter: Ein Transistor für alle Fälle
19.03.2019 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kartographie eines fernen Sterns

Der am Leibniz-Institut für Astrophysik Potsdam (AIP) gefertigte Spektrograph PEPSI zeigt erste Aufnahmen der Struktur des Magnetfelds auf der Oberfläche eines weit entfernten Sterns. Mittels innovativer Verfahren lassen sich damit neue Erkenntnisse über die Vorgänge auf der Sternoberfläche gewinnen. Die Ergebnisse stellte ein Wissenschaftlerteam nun in der Fachzeitschrift Astronomy & Astrophysics vor.

Selbst mit den größten Teleskopen erscheinen die Oberflächen entfernter Sterne normalerweise nur als Lichtpunkte. Eine detaillierte Auflösung wird erst mittels...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Oszillation im Muskelgewebe

Wenn ein Muskel wächst oder eine Verletzung in ihm ausheilt, verwandelt sich ein Teil seiner Stammzellen in neue Muskelzellen. Wie dieser Prozess über zwei oszillierend hergestellte Proteine gesteuert wird, beschreibt nun das MDC-Team um Carmen Birchmeier im Fachjournal „Genes & Development“.

Die Stammzellen des Muskels müssen jederzeit auf dem Sprung sein: Wird der Muskel beispielsweise beim Sport verletzt, ist es ihre Aufgabe, sich so rasch wie...

Im Focus: Das Geheimnis des Vakuums erstmals nachweisen

Neue Forschungsgruppe an der Universität Jena vereint Theorie und Experiment, um erstmals bestimmte physikalische Prozesse im Quantenvakuum nachzuweisen

Für die meisten Menschen ist das Vakuum ein leerer Raum. Die Quantenphysik hingegen geht davon aus, dass selbst in diesem Zustand niedrigster Energie noch...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Ausprobieren und diskutieren

19.03.2019 | Veranstaltungen

Wissenschaftliche Tagung zur Gesundheit von Meeressäugern

18.03.2019 | Veranstaltungen

Tuberkulose - eine der ältesten Krankheiten der Menschheit eliminieren!

15.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kartographie eines fernen Sterns

19.03.2019 | Physik Astronomie

Schlauer Handschuh für Industrie 4.0: Forscher verbinden die Hand mit der virtuellen Welt

19.03.2019 | HANNOVER MESSE

Das neue Original für Industrie 4.0 - Rittal mit neuen Gehäuseserien AX und KX

19.03.2019 | HANNOVER MESSE

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics