Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnellste Messung von Molekülvibrationen

03.03.2006


Heidelberger Max-Planck-Forscher und britische Wissenschaftler verfolgen die Bewegung von Atomkernen in Molekülen mit einer Rekord-Zeitauflösung


Rohdaten der gemessenen UV-Strahlung, die von Wasserstoff (H2)- bzw. Deuteriummolekülen (D2) unter dem Einfluss eines starken Laserpulses emittiert wird. Zunehmende Pixelnummer entspricht abnehmender UV-Wellenlänge. Die stärkere Intensität des D2-Signals spiegelt die langsamere Vibration im Vergleich zu H2 wider. Bild: Imperial College London



Werden Atome oder Moleküle von einem kurzen intensiven Laserpuls getroffen, geben sie hochfrequente Strahlung im extremen UV-Bereich ab. In Molekülen wird dieser Prozess von den Schwingungen der Atome beeinflusst. Vergleicht man die Spektren von unterschiedlich schweren, aber sonst gleichartigen Molekülen (Isotopen), dann kann man aus der gemessenen Strahlung auf die Bewegung der Atome schließen. Mit dieser Methode gelang es dem Forscherteam erstmals, Informationen über die Zeitentwicklung des Moleküls zu erhalten - und zwar schon mit einzelnen, extrem kurzen Laserpulsen (Science Express, 2. März 2006).

... mehr zu:
»Elektron »Laserpuls »Molekül


Die Messung von zeitabhängigen Abläufen in Molekülen wurde in den letzten Jahrzehnten durch die ständige Verbesserung der Lasertechnologie revolutioniert. Einen gewaltigen Fortschritt bedeuteten Femtosekundenpulse: Extrem kurze Laserblitze, die nur wenige Tausendstel einer Billiardstel Sekunde (10-15 s) dauern. Das Licht legt in dieser Zeit nur tausendstel Millimeter zurück. Zum Vergleich: Während der normalen Verschlusszeit einer Fotokamera (1/60 s) schafft Licht die Strecke zwischen Berlin und New York. Mit Femtosekundenpulsen konnten Nobelpreisträger Ahmed Zewail und andere vor etwa 20 Jahren erstmals den Zeitverlauf chemischer Reaktionen in Echtzeit verfolgen. Ihre Experimente basierten stets auf dem Pump-Probe-Prinzip: Ein Laserpuls startet eine Reaktion (Pump), ein zweiter Puls macht eine Momentaufnahme des Moleküls (Probe). "Filmen" kann man die zeitlichen Vorgänge im Molekül, indem man hintereinander viele Einzelaufnahmen mit unterschiedlichen Verzögerungszeiten zwischen Pumppuls und Probepuls herstellt.

Doch die bislang schnellsten Messungen zur Moleküldynamik wurden jetzt mit einem neuen Messverfahren am Imperial College London durchgeführt (Blackett Laboratory Laser Consortium, Direktor Prof. Jon Marangos). Die Grundlage dafür bildet eine Theorie, die von Forschern der Max-Planck-Gesellschaft um Dr. Manfred Lein ausgearbeitet wurde. In den neuartigen Experimenten wird nur ein einzelner Femtosekunden-Laserpuls auf die Probe geschickt. Dieser Puls erzeugt ein elektrisches Feld, das ausreicht, um den bestrahlten Molekülen zu gewissen Zeitpunkten ein Elektron zu entreißen. So wird in dem aus dem Gleichgewicht geratenen Molekülrumpf ein Bewegungsablauf angestoßen. Weil das Feld des Laserpulses periodisch die Richtung wechselt, kann es das freie Elektron zum Ion zurücktreiben. So können sich Elektron und Molekülrumpf wieder vereinigen - und dabei ein hochfrequentes UV-Photon aussenden. Dieser Prozess - und damit die Intensität der UV-Emission - wird um so unwahrscheinlicher, je weiter sich das Molekül in der Zwischenzeit von der Anfangskonfiguration entfernt hat. In der Sprache der Quantenmechanik: Die Wahrscheinlichkeit für Rekombination hängt vom Überlapp zwischen Anfangs- und Endwellenfunktion der Atombewegung ab. Durch Messung der Intensität des UV-Lichtes kann man also auf die zeitliche Entwicklung des Moleküls schließen.

Leider wird die Intensität der ausgesandten UV-Strahlung neben der Kerndynamik noch von vielen anderen Faktoren beeinflusst, zum Beispiel von der Wahrscheinlichkeit für die Ionisation des Moleküls. Dieses Problem umgingen die Forscher mit einem Trick: Sie betrachteten die Spektren zweier verschieden schwerer Isotope eines Moleküls. Isotope haben weitgehend identische Eigenschaften; sie unterscheiden sich nur durch die Masse der Atomkerne und führen deshalb unterschiedlich schnelle Kernbewegungen aus. Die jetzt veröffentlichten Experimente vergleichen zum einen die Spektren von Wasserstoffmolekülen (H2) mit denen doppelt so schwerer Deuteriummoleküle (D2) (s. Abb.), zum anderen werden die Spektren der Methanisotope CH4 und CD4 gegenübergestellt.

Bei der Messung der zeitlichen Entwicklung des Moleküls nutzten die Wissenschaftler einen glücklichen Umstand: Schon ein einziger Laserpuls erzeugt ein ganzes Spektrum an UV-Frequenzen, wobei die Frequenz des UV-Lichtes der Zeitdauer zugeordnet werden kann, die ein zurückkehrendes Elektron "im Freien" verbracht hat. Die höchsten Frequenzen stammen von den Elektronen, die am längsten unterwegs waren. Die Zeitauflösung der Messung ist also durch die Differenz benachbarter UV-Frequenzen im Spektrum bestimmt und liegt bei etwa einem Zehntel einer Femtosekunde. Durch Zuordnung von Frequenz und Zeit kann man aus den Spektren zweier unterschiedlicher Isotope die Zeitentwicklung rekonstruieren. Diese Aufgabe wurde im Falle des Wasserstoffexperiments mit Hilfe eines aufwändigen genetischen Algorithmus per Computer erledigt. Die genaue Analyse der Methandaten ist wesentlich komplizierter und steht noch aus.

Ein wesentlicher Vorteil der neuen Methode gegenüber dem traditionellen Pump-Probe-Prinzip besteht darin, dass schon ein einzelner Laserpuls genügt, um ein ganzes Intervall an Verzögerungszeiten abzutasten. Das vielfache Wiederholen des Experiments mit unterschiedlichen Pump-Probe-Abständen entfällt. Die Erstautorin der Originalveröffentlichung, Dr. Sarah Baker, meint: "We are very excited by these results, not only because we have ‘watched’ motion occurring faster than was previously possible, but because we have achieved this using a compact and simple technique that will make such study accessible to scientists around the world."

Originalveröffentlichung:

S. Baker, J. Robinson, C.A. Haworth, H. Teng, R. A. Smith, C.C. Chirilã, M. Lein, J.W.G. Tisch, and J.P. Marangos
Probing proton dynamics in molecules on an attosecond timescale
Science Express, 2 March 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Elektron Laserpuls Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher untersuchten Wechselwirkungen in künstlichen Systemen
24.09.2018 | Universität Leipzig

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Therapien bei Gefäßerkrankungen

Auf der Jahrestagung der Deutschen Gesellschaft für Angiologie (DGA) vom 12. bis 15. September in Münster stellten Gefäßspezialisten aus ganz Deutschland die neuesten Therapien bei Gefäßerkrankungen vor. Vor allem in den Bereichen periphere arterielle Verschlusskrankheit (pAVK) und venöse Verschlusskrankheiten wie die Tiefe Venenthrombose (TVT) gibt gute Neuigkeiten für die Patienten. Viele der 720 Gefäßspezialisten, die an der Jahrestagung teilnahmen, stellten neueste Studienergebnisse vor.

Millionen Menschen leiden in Deutschland unter Gefäßerkrankungen, allein rund fünf Millionen unter der „Schaufensterkrankheit“, medizinisch periphere...

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit traditionellen Methoden gegen extreme Trockenheit

24.09.2018 | Geowissenschaften

Europäische Spitzenforschung auf der EuMW

24.09.2018 | Messenachrichten

Neue Therapien bei Gefäßerkrankungen

24.09.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics