Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haftung auf Bestellung

01.03.2006


Eine Membran mit schaltbaren Adhäsionsmolekülen (oben), die an einer zweiten Membran mit komplementären Molekülen (unten) haften. Die Adhäsionsmoleküle werden zwischen einem aktivem und einem inaktivem Zustand hin- und hergeschaltet. Im gestreckten Zustand sind die Adhäsionsmoleküle aktiv und können ihre Partnermoleküle in der unteren Membran binden. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung


Potsdamer Max-Planck-Wissenschaftler zeigen, dass die Adhäsion an Zellmembranen stark von Schaltprozessen einzelner Moleküle abhängt


Das Aneinanderhaften von Zellen ist von zentraler Bedeutung für viele Lebens- und Krankheitsvorgänge - ob bei der Immunabwehr oder dem Wachstum von Geweben. Ausgelöst wird diese Zelladhäsion von speziellen Molekülen auf den Zelloberflächen. Einige dieser Adhäsionsmoleküle werden von den Zellen zwischen aktiven und inaktiven räumlichen Strukturen hin- und hergeschaltet. Forscher des Max-Planck-Institutes für Kolloid- und Grenzflächenforschung in Potsdam haben jetzt solche schaltbaren Adhäsionsmoleküle mit Hilfe eines theoretischen Modells untersucht und hierbei unerwartet einen Resonanzeffekt bei der Zellhaftung entdeckt. Dieser Effekt hängt von den Schaltzeiten der jeweiligen Adhäsionsmoleküle sowie den elastischen Eigenschaften der Zellmembranen ab. Der Effekt lässt sich nutzen, um etwa das Anhaften von Zellen auf Oberflächen zu kontrollieren (Physical Review Letters, 3. Februar 2006).

Zellen haften an anderen Zellen mit Hilfe von Adhäsionsmolekülen, die sich an den Zelloberflächen befinden. Jedes Adhäsionsmolekül einer Zelle bindet dabei ein "Partnermolekül" einer anderen Zelle. Die beiden Bindungspartner sind entweder identisch - wie zwei Hände, die sich gegenseitig halten - oder voneinander verschiedene Moleküle, die zueinander passen wie Schloss und Schlüssel. Cadherine beispielsweise sind Adhäsionsmoleküle, die häufig identische Cadherine binden und dadurch die Adhäsion gleicher Zellen beim Wachstum und der Regeneration von Körpergeweben bewirken. Integrine und Selektine dagegen binden verschiedenartige Adhäsionsmoleküle, etwa bei der Adhäsion von Leukozyten während der Immunabwehr.


Entscheidend für die Adhäsion zweier Zellen ist das Wechselspiel zwischen der Anziehung der Adhäsionsmoleküle und den abstoßenden Kräften, die von Fluktuationen der Zellmembranen und von großen, nicht adhäsiven Molekülen auf den Zelloberflächen herrühren. In einem gesunden Organismus haben Zellen die Kontrolle über die Balance zwischen Anziehung und Abstoßung. Bei einigen Krebsarten führen Mutationen der Adhäsionsmoleküle jedoch zu einer die Störung des Gleichgewichts und damit zu anomaler Zelladhäsion und dem Wachstum von Tumoren.

Zellen können ihre Adhäsionsstärke über die Konzentrationen der Adhäsionsmoleküle auf den Zelloberflächen regulieren. Bei manchen Zellen erfolgt diese Regulation jedoch nicht nur über die Molekülkonzentrationen, sondern auch durch Adhäsionsmoleküle, die verschiedene Konformationszustände, also unterschiedliche dreidimensionale Strukturen, besitzen. Integrine beispielsweise können mindestens zwei unterschiedliche Zustände annehmen: In gestreckter Konformation sind sie aktiv und binden an Partnermoleküle auf anderen Zelloberflächen, in der gefalteten Konformation hingegen inaktiv (s. Abb.1).

Die Forscher des Max-Planck-Institutes für Kolloid- und Grenzflächenforschung haben jetzt gezeigt, dass die charakteristischen Zeiten, in denen die Adhäsionsmoleküle zwischen ihren verschiedenen Konformationen hin- und hergeschaltet werden, einen starken Einfluss auf die Adhäsion haben. Der Schaltprozess eines Adhäsionsmoleküls zwischen aktivem und inaktivem Zustand ist ein stochastischer Prozess, also ein Prozess, der mit einer gewissen Wahrscheinlichkeit zu einer bestimmten Zeit auftritt. Dieser Schaltprozess kann durch die mittleren Zeiten für die Schaltübergänge in den beiden Richtungen (von aktiv zu inaktiv und umgekehrt) charakterisiert werden. Der Schaltvorgang erfordert zumindest in einer der Richtungen Energie, beispielsweise in Form von ATP-Molekülen.

Die Max-Planck-Wissenschaftler aus Potsdam haben die Adhäsion von Membranen mit schaltbaren Adhäsionsmolekülen theoretisch untersucht. Die beiden sich gegenüberstehenden Kräfte bei der Adhäsion dieser Membranen sind die anziehenden Kräfte der Adhäsionsmoleküle und abstoßende Kräfte, die von den Formfluktutationen der Membranen herrühren. Beide Kräfte haben charakteristische Zeitskalen. Diese Zeitskalen sind die Schaltzeiten der Adhäsionsmoleküle sowie die Relaxationszeiten der Membranfluktuationen. Interessanterweise tritt ein Resonanzeffekt auf, wenn sich diese Zeiten gleichen. Die Resonanz führt zu starken Membranfluktuationen und zu einer deutlichen Verringerung der Adhäsionsstärke.

Dieser Resonanzeffekt könnte nun dazu benutzt werden, die Zelladhäsion auf biomimetischen Oberflächen zu kontrollieren. In den letzten Jahren haben Wissenschaftler synthetische Moleküle entwickelt, die man mit Hilfe von Licht zwischen den verschiedenen Zuständen hin und her schalten kann. Die charakteristischen Schaltzeiten der Moleküle hängen dabei von der Lichtintensität ab. Werden die Moleküle auf einem Substrat verankert, so entsteht eine optisch schaltbare Oberfläche, mit der man das Adhäsionsverhalten von Zellen beeinflussen und untersuchen kann.

Originalveröffentlichung:

Bartosz Rózycki, Reinhard Lipowsky, and Thomas R. Weikl
Adhesion of membranes with active stickers
Phys. Rev. Lett. 96, 048101 (2006)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Adhäsion Adhäsionsmolekül Molekül Zelladhäsion

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht NASA-Mission ermöglicht genaue Messungen von Neutronensternen - Kernphysik-Team der TU Darmstadt beteiligt
13.12.2019 | Technische Universität Darmstadt

nachricht Hochgeladenes Ion bahnt den Weg zu neuer Physik
11.12.2019 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das feine Gesicht der Antarktis

Eine neue Karte zeigt die unter dem Eis verborgenen Geländeformen so genau wie nie zuvor. Das erlaubt bessere Prognosen über die Zukunft der Gletscher und den Anstieg des Meeresspiegels

Wenn der Klimawandel die Gletscher der Antarktis immer rascher Richtung Meer fließen lässt, ist das keine gute Nachricht. Denn dadurch verlieren die gefrorenen...

Im Focus: Virenvermehrung in 3D

Vaccinia-Viren dienen als Impfstoff gegen menschliche Pockenerkrankungen und als Basis neuer Krebstherapien. Zwei Studien liefern jetzt faszinierende Einblicke in deren ungewöhnliche Vermehrungsstrategie auf atomarer Ebene.

Damit Viren sich vermehren können, benötigen sie in der Regel die Unterstützung der von ihnen befallenen Zellen. Nur in deren Zellkern finden sie die...

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Titin in Echtzeit verfolgen

13.12.2019 | Biowissenschaften Chemie

LogiMAT 2020: Automatisierungslösungen für die Logistik

13.12.2019 | Messenachrichten

Das feine Gesicht der Antarktis

13.12.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics