Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haftung auf Bestellung

01.03.2006


Eine Membran mit schaltbaren Adhäsionsmolekülen (oben), die an einer zweiten Membran mit komplementären Molekülen (unten) haften. Die Adhäsionsmoleküle werden zwischen einem aktivem und einem inaktivem Zustand hin- und hergeschaltet. Im gestreckten Zustand sind die Adhäsionsmoleküle aktiv und können ihre Partnermoleküle in der unteren Membran binden. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung


Potsdamer Max-Planck-Wissenschaftler zeigen, dass die Adhäsion an Zellmembranen stark von Schaltprozessen einzelner Moleküle abhängt


Das Aneinanderhaften von Zellen ist von zentraler Bedeutung für viele Lebens- und Krankheitsvorgänge - ob bei der Immunabwehr oder dem Wachstum von Geweben. Ausgelöst wird diese Zelladhäsion von speziellen Molekülen auf den Zelloberflächen. Einige dieser Adhäsionsmoleküle werden von den Zellen zwischen aktiven und inaktiven räumlichen Strukturen hin- und hergeschaltet. Forscher des Max-Planck-Institutes für Kolloid- und Grenzflächenforschung in Potsdam haben jetzt solche schaltbaren Adhäsionsmoleküle mit Hilfe eines theoretischen Modells untersucht und hierbei unerwartet einen Resonanzeffekt bei der Zellhaftung entdeckt. Dieser Effekt hängt von den Schaltzeiten der jeweiligen Adhäsionsmoleküle sowie den elastischen Eigenschaften der Zellmembranen ab. Der Effekt lässt sich nutzen, um etwa das Anhaften von Zellen auf Oberflächen zu kontrollieren (Physical Review Letters, 3. Februar 2006).

Zellen haften an anderen Zellen mit Hilfe von Adhäsionsmolekülen, die sich an den Zelloberflächen befinden. Jedes Adhäsionsmolekül einer Zelle bindet dabei ein "Partnermolekül" einer anderen Zelle. Die beiden Bindungspartner sind entweder identisch - wie zwei Hände, die sich gegenseitig halten - oder voneinander verschiedene Moleküle, die zueinander passen wie Schloss und Schlüssel. Cadherine beispielsweise sind Adhäsionsmoleküle, die häufig identische Cadherine binden und dadurch die Adhäsion gleicher Zellen beim Wachstum und der Regeneration von Körpergeweben bewirken. Integrine und Selektine dagegen binden verschiedenartige Adhäsionsmoleküle, etwa bei der Adhäsion von Leukozyten während der Immunabwehr.


Entscheidend für die Adhäsion zweier Zellen ist das Wechselspiel zwischen der Anziehung der Adhäsionsmoleküle und den abstoßenden Kräften, die von Fluktuationen der Zellmembranen und von großen, nicht adhäsiven Molekülen auf den Zelloberflächen herrühren. In einem gesunden Organismus haben Zellen die Kontrolle über die Balance zwischen Anziehung und Abstoßung. Bei einigen Krebsarten führen Mutationen der Adhäsionsmoleküle jedoch zu einer die Störung des Gleichgewichts und damit zu anomaler Zelladhäsion und dem Wachstum von Tumoren.

Zellen können ihre Adhäsionsstärke über die Konzentrationen der Adhäsionsmoleküle auf den Zelloberflächen regulieren. Bei manchen Zellen erfolgt diese Regulation jedoch nicht nur über die Molekülkonzentrationen, sondern auch durch Adhäsionsmoleküle, die verschiedene Konformationszustände, also unterschiedliche dreidimensionale Strukturen, besitzen. Integrine beispielsweise können mindestens zwei unterschiedliche Zustände annehmen: In gestreckter Konformation sind sie aktiv und binden an Partnermoleküle auf anderen Zelloberflächen, in der gefalteten Konformation hingegen inaktiv (s. Abb.1).

Die Forscher des Max-Planck-Institutes für Kolloid- und Grenzflächenforschung haben jetzt gezeigt, dass die charakteristischen Zeiten, in denen die Adhäsionsmoleküle zwischen ihren verschiedenen Konformationen hin- und hergeschaltet werden, einen starken Einfluss auf die Adhäsion haben. Der Schaltprozess eines Adhäsionsmoleküls zwischen aktivem und inaktivem Zustand ist ein stochastischer Prozess, also ein Prozess, der mit einer gewissen Wahrscheinlichkeit zu einer bestimmten Zeit auftritt. Dieser Schaltprozess kann durch die mittleren Zeiten für die Schaltübergänge in den beiden Richtungen (von aktiv zu inaktiv und umgekehrt) charakterisiert werden. Der Schaltvorgang erfordert zumindest in einer der Richtungen Energie, beispielsweise in Form von ATP-Molekülen.

Die Max-Planck-Wissenschaftler aus Potsdam haben die Adhäsion von Membranen mit schaltbaren Adhäsionsmolekülen theoretisch untersucht. Die beiden sich gegenüberstehenden Kräfte bei der Adhäsion dieser Membranen sind die anziehenden Kräfte der Adhäsionsmoleküle und abstoßende Kräfte, die von den Formfluktutationen der Membranen herrühren. Beide Kräfte haben charakteristische Zeitskalen. Diese Zeitskalen sind die Schaltzeiten der Adhäsionsmoleküle sowie die Relaxationszeiten der Membranfluktuationen. Interessanterweise tritt ein Resonanzeffekt auf, wenn sich diese Zeiten gleichen. Die Resonanz führt zu starken Membranfluktuationen und zu einer deutlichen Verringerung der Adhäsionsstärke.

Dieser Resonanzeffekt könnte nun dazu benutzt werden, die Zelladhäsion auf biomimetischen Oberflächen zu kontrollieren. In den letzten Jahren haben Wissenschaftler synthetische Moleküle entwickelt, die man mit Hilfe von Licht zwischen den verschiedenen Zuständen hin und her schalten kann. Die charakteristischen Schaltzeiten der Moleküle hängen dabei von der Lichtintensität ab. Werden die Moleküle auf einem Substrat verankert, so entsteht eine optisch schaltbare Oberfläche, mit der man das Adhäsionsverhalten von Zellen beeinflussen und untersuchen kann.

Originalveröffentlichung:

Bartosz Rózycki, Reinhard Lipowsky, and Thomas R. Weikl
Adhesion of membranes with active stickers
Phys. Rev. Lett. 96, 048101 (2006)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Adhäsion Adhäsionsmolekül Molekül Zelladhäsion

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics