Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie lange leben Positronium-Ionen?

20.02.2006


Heidelberger Max-Planck-Forscher vermessen Eigenschaften exotischer Ionen mit bislang unerreichter Präzision


Der schematische Aufbau des Experiments. Die Positronen fallen von links ein, durchdringen eine Kohlenstofffolie und verwandeln sich dabei durch Aufnahme von zwei Elektronen in Positronium-Ionen. Diese werden beschleunigt und nachgewiesen. Bild: Max-Planck-Institut für Kernphysik


Der Laboraufbau des Experiments. Die Positronen treten von links in die Kammer mit den größeren Spulen ein. Die Positronenquelle befindet sich links außerhalb des Bildausschnitts. In der Kammer werden die Positronium-Ionen erzeugt und zur Messung ihrer Lebensdauer auf eine variable Flugstrecke geschickt. Dahinter, in der röhrenförmigen Spule, befindet sich ein Teilchendetektor. Bild: Max-Planck-Institut für Kernphysik



Das Positronium-Ion ist das einfachste geladene Atom, das man sich vorstellen kann - es besteht aus nur zwei Elektronen und einem Positron. Doch stabil ist diese exotische Konfiguration nicht: Bereits nach Bruchteilen von Milliardstel Sekunden zerfällt sie zu Licht. Nun haben Wissenschaftler am Max-Planck-Institut für Kernphysik in Heidelberg das kurzlebige Dreiteilchen-System genauer unter die Lupe genommen. Sie maßen die Lebenszeit von Positronium-Ionen in bislang nicht bekannter Genauigkeit - sechs Mal genauer als es bislang möglich war. Damit tragen die Forscher zu einem besseren Verständnis von Mehrkörpersystemen in der Quantenmechanik bei. Die Messung stellt den Anfang eines Projekts zur Untersuchung des Positronium-Ions dar (Physical Review Letters, online-Edition 13. Februar 2006).

... mehr zu:
»Elektron »Positron »Positronium-Ion


Alle chemischen Elemente der Natur sind nach dem selben Prinzip aufgebaut: Im Atomkern befinden sich Protonen und Neutronen, drum herum Hüllen aus Elektronen. Anders exotische Atome wie das Positronium: Es besteht aus einem Elektron und dessen Antiteilchen, dem Positron, das - bis auf die entgegengesetzte elektrische Ladung - genau die gleichen Eigenschaften hat wie das Elektron. Kommen sich Positron und Elektron zu nahe, dann vernichten sie sich blitzartig. Die gesamte Ruhemasse des Positroniums wird dabei in Gammastrahlung umgewandelt. Weil Positronium-Atome deshalb nur wenige Bruchteile von Milliardstel Sekunden (Nanosekunde) existieren, kommen sie in der Natur praktisch nicht vor.

Allerdings sind Positronium-Atome physikalisch recht einfach zu beschreiben: Es handelt sich um ein System aus zwei praktisch identischen und punktförmigen Teilchen, die sich gegenseitig mit nur einer einzigen Kraft - der "elektroschwachen Wechselwirkung" - anziehen. Unter normalen Umständen genügt sogar die elektromagnetische Kraft zur Beschreibung. In "gewöhnlichen" Atomen aus Neutronen, Protonen und Elektronen verkomplizieren dagegen die räumliche Ausdehnung der Kerne und die zusätzliche starke Wechselwirkung die Rechnung.

Physikalisch spannend wird die Angelegenheit, wenn dem Positronium-Atom ein weiteres Elektron hinzugefügt wird. In solchen negativ geladenen Atomen (Ionen) wechselwirken dann drei Teilchen miteinander - und das ist für Physiker eine Herausforderung, denn die Eigenschaften von Dreikörpersystemen lassen sich nur noch näherungsweise berechnen. Dennoch ist das Positronium-Ion aufgrund seiner Einfachheit ein interessantes Modellsystem für die Quantenmechanik.

Allerdings fehlen bislang experimentelle Daten, um die in der Theorie verwendeten Näherungsverfahren zu testen. Als Auftakt eines Projekts zur Untersuchung des Positronium-Ions haben Heidelberger Max-Planck-Forscher daher nun die Lebensdauer der Exoten sechs Mal genauer bestimmt, als es bislang möglich war. Das Ergebnis: Positronium-Ionen leben im Schnitt knapp eine halbe Nanosekunde (0,4787(34) ns). Dies steht in sehr guter Übereinstimmung mit dem berechneten Wert.

Für die Messung, die insgesamt acht Monate dauerte, schossen die Forscher Positronen durch eine extrem dünne Kohlenstofffolie. Etwa jedes zehntausendste Positron fängt dabei zwei Elektronen ein und bildet ein Positronium-Ion. Da deren Lebensdauer für eine direkte Messung zu kurz ist, wird sie indirekt bestimmt: Die Ionen werden in einem elektrischen Feld auf eine Geschwindigkeit von einigen Prozent der Lichtgeschwindigkeit beschleunigt und über eine sehr präzise verstellbare Flugstrecke geschickt (s. Abbildung 1, 2). Zählt man mit einem geeigneten Nachweisverfahren die am anderen Ende ankommenden Positronium-Ionen für verschiedene Entfernungen, dann lässt sich dadurch die Lebensdauer ermitteln. Bei den genannten Geschwindigkeiten liegt die Reichweite der Ionen gerade im Bereich von einigen Millimetern, eine gut zugängliche und leicht zu handhabende Größenskala.

Für die Zukunft sind weitere Experimente geplant: Mit der Inbetriebnahme der Positronenquelle NEPOMUC an der Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) in Garching bei München steht seit kurzem ein hoch intensiver Positronenstrahl zur Verfügung. Neben einer weiteren Erhöhung der Präzision der Lebensdauermessung rücken damit erstmals auch andere Eigenschaften dieses ungewöhnlichen Ions in Reichweite experimenteller Untersuchungen.

Originalveröffentlichung:

Frank Fleischer, Kai Degreif, Gerald Gwinner, Michael Lestinsky, Vitaly Liechtenstein, Florian Plenge, Dirk Schwalm
Measurement of the decay rate of the negative ion of positronium
Physical Review Letters, 13. 02. 2006 (online)

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Elektron Positron Positronium-Ion

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

nachricht Rätsel gelöst: Das Quantenleuchten dünner Schichten
15.10.2019 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

17.10.2019 | Biowissenschaften Chemie

Was unter dem Yellowstone-Vulkan passiert

17.10.2019 | Geowissenschaften

Für höhere Reichweiten von E-Mobilen: Potentiale von Leichtbauwerkstoffen besser ausschöpfen

17.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics