Energie aus Schwarzen Löchern

Tübinger Astronomen werten erstaunliche Beobachtungen des Röntgensatelliten XMM aus

Selbst Astronomen stellen sich Schwarze Löcher im Weltall manchmal wie Monster vor. Schwarze Löcher sind extrem kompakte Himmelsobjekte mit so starken Gravitationsfeldern, dass nichts ihrer Anziehungskraft entfliehen kann – nicht einmal Licht. Doch diese Monster könnten nach neuesten Erkenntnissen noch unberechenbarer sein als bisher angenommen. Das haben die Auswertungen von Messungen ergeben, die der bislang größte in Europa gebaute Röntgensatellit XMM-Newton geliefert hat. Am Bau der wissenschaftlichen Instrumente an Bord des Satelliten waren Wissenschaftler, Techniker und Studierende vom Institut für Astronomie und Astrophysik der Universität Tübingen (IAAT) beteiligt. Dr. Jörn Wilms, Prof. Dr. Rüdiger Staubert und Dr. Eckhard Kendziorra vom IAAT haben nun Daten, die der Röntgensatellit in der der Universität Tübingen zur Verfügung stehenden Messzeit erhoben hat, in Zusammenarbeit mit einem internationalen Astronomenteam ausgewertet. Für die Tübinger Forscher beobachtete der XMM-Newton-Satellit im Juni 2000 die Spiralgalaxie MCG-6-30-15, die sich in einer Entfernung von 100 Millionen Lichtjahren von der Erde befindet.

Nach aufwändiger Analyse der Daten ziehen die Forscher die Schlussfolgerung, dass in Schwarzen Löchern nicht nur Energie verschwindet, sondern auch ständig daraus entweicht. „Mit den genauen Messungen von XMM-Newton haben wir etwas entdeckt, was bisher niemals an einem Schwarzen Loch beobachtet wurde“, erklärt Wilms. Die Forschungsergebnisse sind zur Veröffentlichung in den Monthly Notices of the Royal Astronomical Society angenommen worden. Die komplexen Mechanismen Schwarzer Löcher faszinieren die Astronomen schon lange. Wissenschaftler gehen davon aus, dass die meisten Galaxien, unsere Milchstraße eingeschlossen, ein supermassives Schwarzes Loch in ihrem Kern enthalten. In diesen Objekten ist die Masse von einer Milliarde Sonnen auf die Größe eines Sonnensystems komprimiert. Staub und Gas aus der Umgebung des Schwarzen Loches kann in dieses hineinfallen. Diese Materie strömt in der Form einer schnell rotierenden Akkretionsscheibe in das Objekt, einer flachen Scheibe um das Schwarze Loch. Die Reibung in der Akkretionsscheibe lässt eine starke Röntgenstrahlung entstehen. „Die Beobachtungskameras des Satelliten haben ein Spektrum erhalten, eine Art chemischen Fingerabdruck der vorhandenen Elemente. Eines der wichtigsten Elemente ist hierbei das Eisen“, erklärt der Physiker Wilms.

Weitere Analysen haben ergeben, dass sich das Eisen im innenliegenden Bereich der Akkretionsscheibe befindet, kurz vor dem Ort, wo Materie im Schwarzen Loch verschwindet. Aber die Stärke und Form der Linie, die von XMM-Newton gemessen wurde, übersteigt bei weitem die, die nach den aufgestellten Modellen für Akkretionsscheiben von supermassiven Schwarzen Löchern erwartet werden konnten. „Das ist wie ein Gummiball, der auf den Boden geworfen wird“, sagt Wilms. „Man kennt die Oberflächenbeschaffenheit und kann vermuten, wie und wann der Ball zurückkommen wird. Aber hier kommt der Ball viel schneller zurück, als ob dort eine Energiequelle wäre, wo er hinfällt. Für unser Schwarzes Loch bedeutet das, dass noch etwas anderes die Akkretionsscheibe aufheizt.“ Die Jagd nach einer passenden Erklärung für die Herkunft dieser zusätzlichen Energie ging weiter.

Theoretische Berechnungen führten das Astronomenteam zu der Erkenntnis, dass das Schwarze Loch selbst rotiert. Nach der Einschätzung des Teams passt nur ein Modell zu den Daten des Satelliten XMM-Newton. Es entspricht einer Theorie, die zwei Astronomen der Cambridge University, Roger Blandford und Roman Znajek, vor 25 Jahren vorgeschlagen haben. Danach kann Rotationsenergie aus einem Schwarzen Loch entweichen, wenn es sich in einem starken magnetischen Feld befindet, das bremsend wirkt. Nach den physikalischen Gesetzen der Thermodynamik sollte die entweichende Energie vom umgebenden Gas aufgenommen werden. „Vielleicht haben wir diesen Effekt eines elektrischen Dynamos zum allerersten Mal gesehen. Energie entweicht durch die Rotation des Schwarzen Loches und wird in den innenliegenden Bereich der Akkretionsscheibe gezogen, sie heizt die Gase auf und bewirkt eine stärkere Röntgenstrahlung“, sagt Wilms. An der Vermutung, dass Schwarze-Loch-Monster nicht nur Energie und Materie fressen, sondern auch Energie austritt, haben andere Experten bereits Zweifel angemeldet. „Wir müssen noch weitere Beobachtungen abwarten, um unsere Schlussfolgerungen abzusichern“, meint Wilms.

Weitere Informationen:

Dr. Jörn Wilms
Institut für Astronomie und Astrophysik
Abteilung Astronomie
Sand 1
72076 Tübingen
Tel. 0 70 71/2 97 61 28
Wegen Umzugs der Abteilung auch über das Sekretariat: Tel. 0 70 71/2 97 24 86
E-Mail: wilms@astro.uni-tuebingen.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Merkmale des Untergrunds unter dem Thwaites-Gletscher enthüllt

Ein Forschungsteam hat felsige Berge und glattes Terrain unter dem Thwaites-Gletscher in der Westantarktis entdeckt – dem breiteste Gletscher der Erde, der halb so groß wie Deutschland und über 1000…

Wasserabweisende Fasern ohne PFAS

Endlich umweltfreundlich… Regenjacken, Badehosen oder Polsterstoffe: Textilien mit wasserabweisenden Eigenschaften benötigen eine chemische Imprägnierung. Fluor-haltige PFAS-Chemikalien sind zwar wirkungsvoll, schaden aber der Gesundheit und reichern sich in der Umwelt an….

Das massereichste stellare schwarze Loch unserer Galaxie entdeckt

Astronominnen und Astronomen haben das massereichste stellare schwarze Loch identifiziert, das bisher in der Milchstraßengalaxie entdeckt wurde. Entdeckt wurde das schwarze Loch in den Daten der Gaia-Mission der Europäischen Weltraumorganisation,…

Partner & Förderer