Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energie aus Schwarzen Löchern

23.10.2001


Tübinger Astronomen werten erstaunliche Beobachtungen des Röntgensatelliten XMM aus


Selbst Astronomen stellen sich Schwarze Löcher im Weltall manchmal wie Monster vor. Schwarze Löcher sind extrem kompakte Himmelsobjekte mit so starken Gravitationsfeldern, dass nichts ihrer Anziehungskraft entfliehen kann - nicht einmal Licht. Doch diese Monster könnten nach neuesten Erkenntnissen noch unberechenbarer sein als bisher angenommen. Das haben die Auswertungen von Messungen ergeben, die der bislang größte in Europa gebaute Röntgensatellit XMM-Newton geliefert hat. Am Bau der wissenschaftlichen Instrumente an Bord des Satelliten waren Wissenschaftler, Techniker und Studierende vom Institut für Astronomie und Astrophysik der Universität Tübingen (IAAT) beteiligt. Dr. Jörn Wilms, Prof. Dr. Rüdiger Staubert und Dr. Eckhard Kendziorra vom IAAT haben nun Daten, die der Röntgensatellit in der der Universität Tübingen zur Verfügung stehenden Messzeit erhoben hat, in Zusammenarbeit mit einem internationalen Astronomenteam ausgewertet. Für die Tübinger Forscher beobachtete der XMM-Newton-Satellit im Juni 2000 die Spiralgalaxie MCG-6-30-15, die sich in einer Entfernung von 100 Millionen Lichtjahren von der Erde befindet.

Nach aufwändiger Analyse der Daten ziehen die Forscher die Schlussfolgerung, dass in Schwarzen Löchern nicht nur Energie verschwindet, sondern auch ständig daraus entweicht. "Mit den genauen Messungen von XMM-Newton haben wir etwas entdeckt, was bisher niemals an einem Schwarzen Loch beobachtet wurde", erklärt Wilms. Die Forschungsergebnisse sind zur Veröffentlichung in den Monthly Notices of the Royal Astronomical Society angenommen worden. Die komplexen Mechanismen Schwarzer Löcher faszinieren die Astronomen schon lange. Wissenschaftler gehen davon aus, dass die meisten Galaxien, unsere Milchstraße eingeschlossen, ein supermassives Schwarzes Loch in ihrem Kern enthalten. In diesen Objekten ist die Masse von einer Milliarde Sonnen auf die Größe eines Sonnensystems komprimiert. Staub und Gas aus der Umgebung des Schwarzen Loches kann in dieses hineinfallen. Diese Materie strömt in der Form einer schnell rotierenden Akkretionsscheibe in das Objekt, einer flachen Scheibe um das Schwarze Loch. Die Reibung in der Akkretionsscheibe lässt eine starke Röntgenstrahlung entstehen. "Die Beobachtungskameras des Satelliten haben ein Spektrum erhalten, eine Art chemischen Fingerabdruck der vorhandenen Elemente. Eines der wichtigsten Elemente ist hierbei das Eisen", erklärt der Physiker Wilms.


Weitere Analysen haben ergeben, dass sich das Eisen im innenliegenden Bereich der Akkretionsscheibe befindet, kurz vor dem Ort, wo Materie im Schwarzen Loch verschwindet. Aber die Stärke und Form der Linie, die von XMM-Newton gemessen wurde, übersteigt bei weitem die, die nach den aufgestellten Modellen für Akkretionsscheiben von supermassiven Schwarzen Löchern erwartet werden konnten. "Das ist wie ein Gummiball, der auf den Boden geworfen wird", sagt Wilms. "Man kennt die Oberflächenbeschaffenheit und kann vermuten, wie und wann der Ball zurückkommen wird. Aber hier kommt der Ball viel schneller zurück, als ob dort eine Energiequelle wäre, wo er hinfällt. Für unser Schwarzes Loch bedeutet das, dass noch etwas anderes die Akkretionsscheibe aufheizt." Die Jagd nach einer passenden Erklärung für die Herkunft dieser zusätzlichen Energie ging weiter.

Theoretische Berechnungen führten das Astronomenteam zu der Erkenntnis, dass das Schwarze Loch selbst rotiert. Nach der Einschätzung des Teams passt nur ein Modell zu den Daten des Satelliten XMM-Newton. Es entspricht einer Theorie, die zwei Astronomen der Cambridge University, Roger Blandford und Roman Znajek, vor 25 Jahren vorgeschlagen haben. Danach kann Rotationsenergie aus einem Schwarzen Loch entweichen, wenn es sich in einem starken magnetischen Feld befindet, das bremsend wirkt. Nach den physikalischen Gesetzen der Thermodynamik sollte die entweichende Energie vom umgebenden Gas aufgenommen werden. "Vielleicht haben wir diesen Effekt eines elektrischen Dynamos zum allerersten Mal gesehen. Energie entweicht durch die Rotation des Schwarzen Loches und wird in den innenliegenden Bereich der Akkretionsscheibe gezogen, sie heizt die Gase auf und bewirkt eine stärkere Röntgenstrahlung", sagt Wilms. An der Vermutung, dass Schwarze-Loch-Monster nicht nur Energie und Materie fressen, sondern auch Energie austritt, haben andere Experten bereits Zweifel angemeldet. "Wir müssen noch weitere Beobachtungen abwarten, um unsere Schlussfolgerungen abzusichern", meint Wilms.

Weitere Informationen:

Dr. Jörn Wilms
Institut für Astronomie und Astrophysik
Abteilung Astronomie
Sand 1
72076 Tübingen
Tel. 0 70 71/2 97 61 28
Wegen Umzugs der Abteilung auch über das Sekretariat: Tel. 0 70 71/2 97 24 86
E-Mail: wilms@astro.uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://astro.uni-tuebingen.de
http://sci.esa.int/xmm
http://legacy.gsfc.nasa.gov/docs/xmm/xmm.html

Weitere Berichte zu: Akkretionsscheibe Astronom Röntgensatellit XMM-Newton

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schatzkammer Datenbank: Digitalisierte Schwingfestigkeitskennwerte sparen Entwicklungszeit

16.08.2018 | Informationstechnologie

Interaktive Software erleichtert Design komplexer Gussformen

16.08.2018 | Informationstechnologie

Fraunhofer HHI entwickelt Quantenkommunikation für jedermann im EU-Projekt UNIQORN

16.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics