Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekülwolken im Zentrum der Milchstraße

09.02.2006


H.E.S.S.-Farbbild der Molekülwolken


Die Teleskope des H.E.S.S.-Experiments in Namibia, 1800 m über dem Meeresspiegel, mit einem Bild von Viktor F. Hess, Entdecker der Kosmischen Strahlung. ©H.E.S.S.-Experiment


H.E.S.S.-Arbeitsgruppe sucht Hadronenbeschleuniger
RUB-Forscher berichten in NATURE



Mit dem in Namibia aufgebauten H.E.S.S. (High Energy Stereoscopic System)-Experiment, einem System von vier miteinander verschalteten Teleskopen, haben Forscher mehrere Molekülwolken im Zentrum unserer Milchstraße im Licht hochenergetischer Photonengammastrahlung entdeckt. Als Quelle für die Strahlung, deren Energie mehr als 100 Giga-Elektronenvolt beträgt, vermuten sie entweder eine Supernova oder das supermassive Schwarze Loch in der Mitte der Milchstraße. "Das europäische H.E.S.S.-Experiment, das kürzlich als Finalist bei der europäischen EU-Descartes Preisvergabe ausgezeichnet wurde, setzt seine bahnbrechenden Entdeckungen damit fort", freut sich Prof. Dr. Reinhard Schlickeiser, Leiter der an der H.E.S.S.-Kollaboration beteiligten RUB-Arbeitsgruppe (Lehrstuhl für Theoretische Physik IV). Über ihre Entdeckung berichten die Forscher im Wissenschaftsmagazin NATURE vom 9. Februar 2006.

Kandidaten für die Beschleunigung

Um Photonen solch hoher Energie zu generieren, müssen geladene Hadronen der kosmischen Strahlung auf noch höhere Energien beschleunigt werden. Hadronen sind Teilchen, die der sog. Starken Wechselwirkung unterliegen. Prominenteste Vertreter sind die Grundbausteine der Atomkerne in der Materie, die Protonen und Neutronen. Im Falle der hochenergetischen Photonengammastrahlung werden meist Protonen beschleunigt, bevor sie im Zusammenstoß mit den Wasserstoffmolekülen in den Molekülwolken neutrale Pionen erzeugen, die dann sofort in hochenergetische Photonen zerfallen. "Das Neuartige an der H.E.S.S.-Beobachtung ist die Erkenntnis, dass die dazu nötige Hadronenintensität weit stärker sein muss als in unserer Sonnensystem-Umgebung, um die gemessene Gammastrahlungsintensität zu erklären", erläutert Prof. Schlickeiser. Ein naher aktiver kosmischer Hadronenbeschleuniger im galaktischen Zentrum sorgt für diese Verstärkung. Die zukünftige genaue Vermessung der Molekülwolkenverteilung und der Gammastrahlenverteilung soll helfen, ihn genau zu lokalisieren. Kandidaten sind sowohl die gigantischen Sternexplosionen (Supernova-Explosionen) im Zentralbereich unserer Milchstraße als auch das supermassive Schwarze Loch in ihrem Zentrum.

Gammastrahlungshimmel unter Beobachtung

Am Lehrstuhl für Theoretische Physik IV (Weltraum- und Astrophysik) der Ruhr-Universität gehen die Forscher Fragestellungen der Hochenergieemission von astronomischen Objekten, insbesondere deren Teilchenbeschleunigung nach. Neben Supernova-Überresten stehen die diffuse galaktische Gammastrahlung, die aus Wechselwirkungen der Kosmischen Strahlung in unserer Milchstraße resultiert, und die Jet-Emission in Aktiven Galaktischen Kernen (AGN) im Fokus der Bochumer Forscher. Für die Erforschung dieses breiten Spektrums an Objekten am Gammastrahlungshimmel nutzen die Bochumer Forscher sowohl Satellitendaten als auch erdgebundene Experimente wie die Teleskope des H.E.S.S.-Experimentes.

Forscher des H.E.S.S.-Experiments genießen internationales Renommée

Neben Prof. Schlickeiser arbeiten in der Bochumer H.E.S.S.-Arbeitsgruppe zurzeit Dipl.-Phys. Ralf Schröder, Dr. Andreas Shalchi und Dr. Felix Spanier. Die anderen Bochumer Ko-Autoren (Dr. Anita Reimer, Dr. Olaf Reimer, Dr. Mark Siewert und Dr. Claudia Schuster) haben das Bochumer Institut verlassen, um Anstellungen an anderen Instituten in Deutschland und den USA wahrzunehmen. "Das H.E.S.S.-Experiment gibt unseren Nachwuchswissenschaftlern einen hervorragenden internationalen Ruf, sodass sie von anderen Forschungsinstitutionen abgeworben werden", stellt Prof. Schlickeiser zufrieden fest. "Das ist einerseits natürlich begrüßenswert. Andererseits müssen wir schnell Absolventen in diesem dynamischen Forschungsbereich ausbilden, um unsere umfangreichen Pflichten, wie die Beobachtungsschichten in Namibia, dem Standort des H.E.S.S.-Teleskops, die Datenauswertung und Dateninterpretation und die begleitende theoretische Modellierung innerhalb der Kollaboration zu erfüllen."

Titelaufnahme

F. Aharonian et.al.: Discovery of very-high-energy g-rays from the Galactic Centre ridge. In: Nature Volume 439 Number 7077, 9. Februar 2006

Weitere Informationen

Prof. Dr. Reinhard Schlickeiser, Lehrstuhl für Theoretische Physik IV, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-22032, Fax: 0234/32-14177, E-Mail: rsch@tp4.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/
http://www.ruhr-uni-bochum.de/rubin

Weitere Berichte zu: Molekülwolke Molekülwolken Physik Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher untersuchten Wechselwirkungen in künstlichen Systemen
24.09.2018 | Universität Leipzig

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Therapien bei Gefäßerkrankungen

Auf der Jahrestagung der Deutschen Gesellschaft für Angiologie (DGA) vom 12. bis 15. September in Münster stellten Gefäßspezialisten aus ganz Deutschland die neuesten Therapien bei Gefäßerkrankungen vor. Vor allem in den Bereichen periphere arterielle Verschlusskrankheit (pAVK) und venöse Verschlusskrankheiten wie die Tiefe Venenthrombose (TVT) gibt gute Neuigkeiten für die Patienten. Viele der 720 Gefäßspezialisten, die an der Jahrestagung teilnahmen, stellten neueste Studienergebnisse vor.

Millionen Menschen leiden in Deutschland unter Gefäßerkrankungen, allein rund fünf Millionen unter der „Schaufensterkrankheit“, medizinisch periphere...

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit traditionellen Methoden gegen extreme Trockenheit

24.09.2018 | Geowissenschaften

Europäische Spitzenforschung auf der EuMW

24.09.2018 | Messenachrichten

Neue Therapien bei Gefäßerkrankungen

24.09.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics