Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heißes und sehr heißes Gas um Schwarze Löcher

19.10.2001


Henk Spruit, Bernhard Deufel, Kees Dullemond


Abbildung 1: So etwa würde die Umgebung eines Schwarzen Lochs in einem Röntgendoppelstern nach der neuen Theorie aussehen. Die Akkretionsscheibe (braun und rot dargestellt) ist undurchsichtig und vergleichsweise kühl, mit Temperaturen bis 1 Million Grad. Näher am Loch im Zentrum gibt es ein sehr heisses, transparentes Gas (mehr als 100 Milliarden Grad, im Bild dargestellt durch den blauen `Dunst’). Im weissen Gebiet leuchtet die Scheibe auf durch die Wechselwirkung mit dem umgebenden blauen Dunst. In der Theorie spielt dieses Wechselwirkungsgebiet eine zentrale Rolle, und verursacht den grössten Teil der beobachteten Röntgenstrahlung.


Es gibt wahrscheinlich Milliarden Schwarzer Löcher in unserer Galaxis, die jedoch, weil schwarz, schwer zu entdecken sind. Sie verraten ihre Anwesenheit aber in spektakulärer Weise, wenn sie einen Begleitstern in der Nähe haben, der ihnen Masse spendiert. In diesem Fall werden Sie helle Röntgensterne: die enorm starken Schwerekräfte heizen das einfallende Gas dermassen auf, dass es in Röntgenstrahlen glüht.

Aber die Beobachtungen dieser Röntgenstrahlen geben einige schwierige Rätsel auf. Nach der gängigen Theorie erwartet man, dass das ins Loch strömende Gas eine undurchsichtige, leuchtende Scheibe bildet, eine sog. Akkretionsscheibe (Abb.1), mit einer Temperatur bis etwa 10 Millionen Grad. Die beobachteten Röntgenstrahlen zeigen, dass dies in den meisten Fällen nicht stimmt: das im Röntgenlicht strahlende Gas ist 1 Milliarde Grad heiss statt Millionen Grad, und transparent statt undurchsichtig. Es ist, als ob die inneren Teile der Akkretionsscheibe fehlen und ersetzt werden durch ein verdünntes, sehr heisses Plasma.



Die am Max-Planck-Institut für Astrophysik entwickelte neue Theorie erklärt nun, warum dies so ist. Sie beschreibt, wie die inneren Teile der kühlen Scheibe umgewandelt werden in ein heisses Plasma. Durch die Gravitationskräfte auf eine Temperatur über 100 Milliarden Grad geheizt, ist dieses Plasma in direktem Kontakt mit der kühlen Scheibe. Es heizt dessen Innenrand auf (weisse Gebiete in Abb.1), der dadurch in harten Röntgenstrahlen aufleuchtet (das Plasma selbst ist transparent und leuchtet nur schwach). Der wichtigste Teil der neuen Theorie erklärt nun, wie dieser Bereich `verdampfen’ kann, und wie das verdampfende Gas Teil des heissen Plasmas wird (in Abb.1 blau dargestellt). Schliesslich wird das Gas dann vom Schwarzen Loch geschluckt (s. auch die Skizze in Abb.2).

Abbildung 2: Skizze des Übergangs von einer kühlen Akkretionsscheibe in ein heisses `Zwei-Temperatur-Plasma’ (auch ’ion supported accretion flow’ oder ISAF). Die energetischen Ionen des ISAF heizen die kühle Scheibe (Ausschnitt rechts), und erzeugen dort harte Röntgenstrahlung. Diese geheizte Scheibe liefert auch die Masse für das Plasma im ISAF.


Das Schönste an der Theorie ist, dass sie nur Gebrauch macht von den schon lange bekannten Eigenschaften von ionisierten Plasmen, insbesondere von der Art, wie die Elektronen und Ionen eines sog. `Zwei-Temperaturen-Plasmas’ durch elektrische Kräfte Energie austauschen. Die Theorie ist eine ziemlich direkte Folge dieser Eigenschaften, aber eine, die bis jetzt übersehen wurde.



Abbildung 3: Wo ist in Bild 1 das Schwarze Loch? Es ist unsichtbar, denn weder reflektiert es Strahlung, noch strahlt es selbst. Der Ort des Lochs ist hier angedeutet durch eine gestrichelte Linie an der Stelle des sog. Horizontes. Dieser ist die letzte Fläche, von woher Strahlung aus der Umgebung des Lochs uns noch erreichen kann.


Weitere Informationen:

  • B. Deufel, C.P. Dullemond, H.C. Spruit, X-Ray spectra from accretion disks illuminated by protons, Preprint astro-ph/0108496

  • H.C. Spruit, B. Deufel, The transition from a cool disk to an ion supported flow, Preprint astro-ph/0108497


| Max-Planck-Institut für Astrophy
Weitere Informationen:
http://www.mpa-garching.mpg.de/HIGHLIGHT/2001/highlight0110_d.html
http://www.mpa-garching.mpg.de/

Weitere Berichte zu: ABB Akkretionsscheibe ISAF Röntgenstrahl Spruit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blauer Phosphor – jetzt erstmals vermessen und kartiert
15.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Materiezustände durch Licht verändern
12.10.2018 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Multiresistente Keime aus Abwasser filtern

16.10.2018 | Ökologie Umwelt- Naturschutz

Pilz schlägt sich mit eigenen Waffen

16.10.2018 | Biowissenschaften Chemie

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics