Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optimierung wissenschaftlicher Geräte durch ultraschnelle Röntgendetektoren

12.01.2006


Eine ultraschnelle Röntgen-Streifen-Kamera mit einer Zeitwiederholungsrate von 5Hz bis 7kHz wird voraussichtlich den Weg für zukünftige Forschungsarbeiten zu Atombewegungen bahnen.



Wissenschaftliche Forschungen in den Bereichen Physik, Chemie und Biologie erfordern oft die Untersuchung von ultraschnellen transienten Strukturen. Atombewegungen, die einen Vibrationsvorgang dominieren, stellen die kürzeste Dauer dar, die normalerweise 100 Femtosekunden beträgt. Dieses Phänomen der Atombewegung kann nur mit Hilfe von Strahlen mit sehr kurzen Wellenlängen, wie beispielsweise Röntgenstrahlen, beobachtet werden.

... mehr zu:
»Atombewegung »Spektroskopie


Die ultraschnelle optische Spektroskopie ist eine nützliche Methode zur Ermittlung elektronischer Veränderungen. Dennoch erscheint sie als unzureichend, wenn sehr schnelle strukturelle Neuordnungen beobachtet werden sollen. In solchen Fällen kann sich die Beugung der Röntgenstrahlen als wichtige Hilfe bei der detaillierten Charakterisierung von Strukturen auf Atomebene herausstellen, da so die Verfolgung der Reaktionszwischenprodukte möglich wird.

Obwohl derzeitige Tools und Messausrüstungen, wie beispielsweise Synchrotrone, sehr schnell verfahren, wird eine kürzeste mögliche Dauer von 30-100ps für die zeitliche Auflösung in Experimenten geboten. Neuste Entwicklungen im Bereich der röntgenfreien Elektronen-Laser könnten zukünftig umfangreiche ultraschnelle Röntgentechnologien möglich machen. Im Rahmen des FAMTO-Projekts wurde sich jedoch auf die Verbesserung bereits existierender Messausrüstungen konzentriert.

Genauer gesagt wurde der Einsatz der Beugung von Röntgenstrahlung für die Untersuchung kurzlebiger transienter Spezies erweitert. Dabei wird eine Sub-Picosekunden-Auflösung angewendet. Ein zentrales Projektergebnis beinhaltete eine neue Ausgabemethode für ultraschnelle Röntgen-Streifen-Kameras, die der mit Zeit in Verbindung stehenden Ein-Photon-Zähl-Methode für zeitauflösende Spektroskopie an Atomen ähnlich ist. Dadurch kann die zeitliche Auflösung von wenigen ps auf 500fs verbessert werden und die Wiederholungsrate kann von wenigen Hz auf 7kHz erhöht werden.

Die Methode ermöglicht den Einsatz an Synchrotronen und Lasergeräten in einem äußerst kosteneffektiven Maße. Speziell für Synchrotrone kann die zeitliche Auflösung von 100ps auf mehrere 100 Femtosekunden erhöht werden. Darüber hinaus kann mittels des Röntgendetektors eine einzigartige Wiederholungsrate für Datenerfassung geboten werden, die höher als bei jedem vergleichbaren Gerät ist.

Prof. Jorgen Larsson | ctm
Weitere Informationen:
http://loa.ensta.fr/famto/
http://www.atom.fysik.lth.se/txrd

Weitere Berichte zu: Atombewegung Spektroskopie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der Zeit atomarer Vorgänge auf der Spur
22.02.2019 | Max-Planck-Institut für Kernphysik

nachricht Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst
22.02.2019 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst

Ein internationales Forscherteam unter Beteiligung von Astronomen des Bonner Max-Planck-Instituts für Radioastronomie hat Radioteleskope auf fünf Kontinenten miteinander verknüpft, um das Vorhandensein eines stark gebündelten Materiestrahls, eines sogenannten Jets zu beweisen, der vom Überrest des bisher einzigen bekannten Gravitationswellenereignisses ausgeht, bei dem zwei Neutronensterne miteinander verschmolzen. Bei den Beobachtungen im weltweiten Netzwerk spielte das 100-m-Radioteleskop in Effelsberg eine wichtige Rolle.

Im August 2017 wurde zum ersten Mal die Verschmelzung zweier sehr kompakter Sternüberreste, sogenannter Neutronensterne, beobachtet, deren vorhergehende...

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Materialdesign in 3D: vom Molekül bis zur Makrostruktur

Mit additiven Verfahren wie dem 3D-Druck lässt sich nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsamen Exzellenzcluster „3D Matter Made to Order” wollen Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg die dreidimensionale additive Fertigung auf die nächste Stufe heben: Ziel ist die Entwicklung neuer Technologien, die einen flexiblen, digitalen Druck ermöglichen, der mit Tischgeräten Strukturen von der molekularen bis zur makroskopischen Ebene umsetzen kann.

„Der 3D-Druck bietet gerade im Mikro- und Nanobereich enorme Möglichkeiten. Die Herausforderungen, um diese zu erschließen, sind jedoch ebenso gewaltig“, sagt...

Im Focus: Diamanten, die besten Freunde der Quantenwissenschaft - Quantenzustand in Diamanten gemessen

Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen. Ein Qubit gilt als die Grundeinheit der Quanteninformation. Die Ergebnisse der Studie, die von der Universität Ulm koordiniert wurde, erschienen jüngst in der renommierten Fachzeitschrift Science.

Die Quantentechnologie gilt als die Technologie der Zukunft. Die wesentlichen Bausteine für Quantengeräte sind Qubits, die viel mehr Informationen verarbeiten...

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mobile World Congress: Bundesamt für Strahlenschutz rät zu Handys mit geringem SAR-Wert

22.02.2019 | Veranstaltungen

Unendliche Weiten: Geophysiker nehmen den Weltraum ins Visier

21.02.2019 | Veranstaltungen

Tagung rund um zuverlässige Verbindungen

20.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Zeit atomarer Vorgänge auf der Spur

22.02.2019 | Physik Astronomie

Wie Korallenlarven sesshaft werden

22.02.2019 | Biowissenschaften Chemie

Ökologische Holz-Hybridbauweisen für den Geschossbau

22.02.2019 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics