Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroskopische Wirkung von "Handy-Strahlung" auf Körperzellen

08.12.2005


Augsburger Physiker untersuchen im Auftrag des BMU die Wirkungen nicht-ionisierender elektromagnetischer Strahlung auf zellulärer und subzellulärer Ebene.



Im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit hat das Bundesamt für Strahlenschutz (BfS) ein Forschungsprojekt über die Wirkung nicht-ionisierender elektromagnetischer Strahlung auf molekularer Ebene an das Institut für Physik der Universität Augsburg vergeben. Nicht-ionisierende Strahlung wird gemeinhin als "Elektrosmog" bezeichnet. Über ihre Wirkung auf zellulärer und subzellulärer Ebene - insbesondere im Mobilfunk-Frequenzbereich - ist nur sehr wenig bekannt. Bislang wurden Grenzwerte unter Zugrundelegung rein thermischer Belastungen abgeschätzt und empfohlen. Nun soll im Rahmen des Deutschen Mobilfunk-Forschungsprogramms (DMF) die direkte Wirkung der "Handy-Strahlung" auf den Mikroorganismus detailliert untersucht werden.

... mehr zu:
»BfS »Experimentalphysik »Strahlung


Von biologisch-medizinischer Seite ist seit langem bekannt, dass im Organismus im Bereich der Zellen elektrische Felder allgegenwärtig sind. Intern generierte elektrische Signale von Zellen zeigen den Status des Mikroorganismus, äußere elektrische Felder stimulieren die Protein-Biosynthese und Zellteilung. Zellen und subzelluläre Einheiten interagieren mit ihrer Umgebung über den Austausch von Ionen und über die Änderung des elektrochemischen Potentials. Elektrische Felder und Potentialdifferenzen über die Plasma-Membranen spielen für die Funktionalität der Zellen eine wesentliche Rolle. Insgesamt sind Membran-Proteine hochempfindliche elektronisch-biologische Apparate, die auf Änderungen elektrischer Felder instantan reagieren.

Die Untersuchung, mit der die Forscher am Augsburger Physik-Institut jetzt beauftragt wurden, ist darauf ausgerichtet, etwaige Störungen der Funktionalität oder sonstige Schädigungen von Zellen zu entdecken, die auf externe elektromagnetische Strahlung zurückzuführen sind. Dabei sollen insbesondere Mobilfunk-Frequenzen im Bereich von 500 MHz bis 5 GHz mit einer Intensität, die unserer täglichen Belastung entspricht, für die Untersuchungen benutzt werden.

Durch seine für diesen Themenkomplex ideal geeignete Expertise konnte das Institut für Physik der Universität Augsburg die Ausschreibung des BfS im Wettbewerb für sich entscheiden. Am Projekt beteiligt sind drei Arbeitsgruppen: Die Federführung liegt beim Lehrstuhl für Experimentalphysik V/EKM. Prof. Dr. Alois Loidl und Dipl.-Phys. Rudolf Gulich führen hier dielektrische Spektroskopie an Zellen, Proteinen und Membranen durch und besorgen mikroskopische Netzwerkanalysen. Am Lehrstuhl für Experimentalphysik I sind Prof. Dr. Achim Wixforth und Dr. Matthias Schneider mit der Lösung biophysikalischer Fragestellungen und der Untersuchung von elektrischem Transport an einzelnen Zellen befasst. Am Lehrstuhl für Theoretische Physik I besorgen Prof. Dr. Peter Hänggi und Dr. Gerhard Schmid die theoretische Begleitung des Projekts, wobei hier der Ladungstransport in biologischen Materialien sowie die Bedeutung von Nicht-Gleichgewichtsprozessen bei biophysikalischen Prozessen im Mittelpunkt des Interesses stehen.

PRESSEKONTAKT:
Prof. Dr. Alois Loidl
Lehrstuhl für Experimentalphysik V/EKM
Telefon 0821/598-3600
alois.loidl@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Berichte zu: BfS Experimentalphysik Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics