Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnappschüsse an der atomaren Grenze

29.11.2005


Ein flüssiger Aluminium-Tropfen an der Grenzfläche zu kristallinem Aluminiumoxid. Elektronenmikroskopisch untersucht wurden die in Bild 1B dargestellte Verhältnisse an der Grenzfläche. Bild: Max-Planck-Institut für Metallforschung


Stuttgarter Max-Planck-Forscher beobachten erstmals Wechselwirkungen der Atome an der Grenzfläche zwischen einem flüssigem Metall und einem Kristall
Die Halbleitertechnologie hat längst den Nanometerbereich erreicht - Leiterbahnen auf modernen Computer-Chips sind heute nur noch einige Dutzend Nanometer breit (ein Nanometer = ein Millionstel Millimeter). Um deren Herstellungsverfahren auf atomarer Ebene optimieren zu können, ist ein umfassendes und grundlegendes Verständnis jener Prozesse und Phänomene erforderlich, die sich an der Grenzfläche zwischen flüssigen und festen Materialien abspielen. Wissenschaftlern des Max-Planck-Institut für Metallforschung in Stuttgart und des Israel Institute of Technology in Haifa ist es jetzt erstmals gelungen, atomare Prozesse direkt an der Grenzfläche zwischen flüssigem Aluminium und festem Aluminiumoxid (Saphir) zu beobachten. Mittels Hochspannungs-Elektronenmikroskopie konnten sie nachweisen, dass Kristalle in der Lage sind, die Atome in benachbarten flüssigen Metallen zu ordnen, selbst bei hohen Temperaturen. Diese Erkenntnisse sind wichtig, wenn beispielsweise Oberflächen mit Flüssigkeiten benetzt werden sollen - wie beim "Löten" Nanometer-kleiner Kontaktstellen.

... mehr zu:
»ALUMINIUM »Aluminiumoxid »Atom »Nanometer


Unter einem Saphir stellt sich der Laie einen blau schimmernden Halbedelstein vor, der zum Beispiel als Tonabnehmernadel im Plattenspieler benutzt wird. Für Wissenschaftler ist Saphir eine bestimmte Form von Aluminiumoxid (α-Al203, auch: Korund). Dieses sehr stabile Aluminiumoxid wird in vielen technologischen Bereichen eingesetzt, in der Halbleitertechnologie beispielsweise isoliert es elektronische Bauteile. In dieser Branche - aber auch bei vielen anderen technologischen Prozessen (z.B. Erstarrung, Kristallwachstum, Schmierung) müssen die Herstellungsverfahren in immer kleineren Dimensionen durchgeführt und optimiert werden. Deshalb ist es wichtig zu wissen, welche Verbindungen und Reaktionen an Grenzflächen zwischen festen und flüssigen Stoffen auf atomarer Ebene stattfinden.

Das Interesse an einer grundlegenden Erforschung der Struktur und Phänomene an Fest-Flüssig-Grenzflächen hat zugenommen, nachdem bisherige Studien mit Röntgenbeugung und atomistische Computersimulationen gezeigt haben, dass es sehr dicht an der Grenzfläche zu Dichteschwankungen in der flüssigen Phase kommt. Um diese Prozesse mit hoch auflösender Transmissions-Elektronenmikroskopie näher untersuchen zu können, wählten die Wissenschaftler als Versuchssystem flüssiges Aluminium sowie die feste Keramik α-Al203 in einkristalliner Form (= Saphir). Sie brachten dieses Materialsystem an einem Hochspannungs-Elektronenmikroskop mit einer Auflösung von 0,12 Nanometern auf Temperaturen von 850 Grad Celsius, was oberhalb des Schmelzpunktes von Aluminium (660 Grad Celsius) liegt.

Das Stuttgarter Transmissions-Elektronenmikroskop JEM-ARM 1250, JEOL, gehört zu den am höchsten auflösenden Geräten seiner Art weltweit. Mit diesem Mikroskop haben die Max-Planck-Wissenschaftler nun zum ersten Mal im Bild festgehalten, dass die Dichte der Atome in flüssigem Aluminium direkt an der Grenzfläche nicht einheitlich ist. Es stellen sich Dichtefluktuationen ein. Als Folge kleiner Änderungen der Experimentierbedingungen ließen sich außerdem das Wachstum des Saphirs aus flüssigem Aluminium sowie das Eindringen von Sauerstoff-Atomen entlang der Grenzfläche beobachten.

Das Ergebnis des Reaktionsgeschehens ("in situ"-Beobachtung) bannten die Forscher auf Videofilm mit 25 Bildern pro Sekunde. Den Wissenschaftlern ist es gelungen, stichhaltige Ergebnisse unbeeinträchtigt durch mögliche Artefakt-Effekte zu erzielen. Die Aufnahmen zeigen, wie sich die Atome des flüssigen Aluminiums an der kristallinen Grenzfläche anordnen. Erkennbar geworden ist, dass sich die Grenzfläche dynamisch entwickelt und der Kristall lagenweise wächst. Die Forscher folgern daraus, dass Kristalle die Anordnung von Atomen in Flüssigkeiten induzieren können - sogar in Metall-Keramik-Systemen unter hohen Temperaturen.

Die mit dem oben beschriebenen Materialsystem gewonnenen Erkenntnisse können nützlich sein für "Lötprozesse im Nanometerbereich", welche künftig für die Produktion von Speicherchips von Bedeutung sein können.

Dieses Projekt wurde gefördert durch die Max-Planck-Gesellschaft, den German-Israel Fund, die Deutsche Forschungsgemeinschaft (Graduiertenkolleg "Innere Grenzflächen") und das Russell Berrie Nanotechnology Institute in Technion, Israel.

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: ALUMINIUM Aluminiumoxid Atom Nanometer

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Extrem klein und schnell: Laser zündet heißes Plasma
18.09.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Schaltung des Stromflusses auf atomarer Skala
17.09.2018 | Universität Augsburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: Mit Nano-Lenkraketen Keime töten

Wo Antibiotika versagen, könnten künftig Nano-Lenkraketen helfen, multiresistente Erreger (MRE) zu bekämpfen: Dieser Idee gehen derzeit Wissenschaftler der Universität Duisburg-Essen (UDE) und der Medizinischen Hochschule Hannover nach. Zusammen mit einem führenden US-Experten tüfteln sie an millionstel Millimeter kleinen Lenkraketen, die antimikrobielles Silber zielsicher transportieren, um MRE vor Ort zur Strecke zu bringen.

In deutschen Krankenhäusern führen die MRE jährlich zu tausenden, teils lebensgefährlichen Komplikationen. Denn wer sich zum Beispiel nach einer Implantation...

Im Focus: Schaltung des Stromflusses auf atomarer Skala

Forscher aus Augsburg, Trondheim und Zürich weisen gleichrichtende Eigenschaften von Grenzflächenkontakten im ferroelektrischen Halbleiter nach.

Die Grenzflächen zwischen zwei elektrisch unterschiedlich polarisierten Bereichen im Festkörper werden als ferroelektrische Domänenwände bezeichnet. In der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungen

Unbemannte Flugsysteme für die Klimaforschung

18.09.2018 | Veranstaltungen

Studierende organisieren internationalen Wettbewerb für zukünftige Flugzeuge

17.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Auf der InnoTrans 2018 mit innovativen Lösungen für den Güter- und Personenverkehr

18.09.2018 | Messenachrichten

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungsnachrichten

Extrem klein und schnell: Laser zündet heißes Plasma

18.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics