RUB-Chemiker fangen NO-Molekül im Nanotröpfchen

Im Nanotröpfchen ist das NO-Molekül wie in einem winzigen Labor eingefangen.

o Radikal trifft Quantenflüssigkeit: Eine unterkühlte Begegnung
o NO im Heliumnanotröpfchen beobachtet
o RUB-Chemiker berichten in Physical Review Letters

In einem fünf Nanometer kleinen Ball aus supraflüssigem Helium haben Bochumer Chemiker um Prof. Dr. Martina Havenith-Newen (Lehrstuhl für physikalische Chemie II) bei -272,78°C – nur 0,37°C über dem absoluten Nullpunkt – ein Stickstoffoxid(NO)-Molekül eingefangen. Mittels eines hochauflösenden Infrarotlasers, der einen charakteristischen chemischen Fingerabdruck liefert, konnten die Forscher erstmals Informationen über die Wechselwirkung zwischen dem NO-Molekül und seiner Umgebung herausfinden. Über ihre Ergebnisse berichten sie in der aktuellen Ausgabe von „Physical Review Letters“.

Nanotröpfchen beeinflusst Einzelelektron fast nicht

Das sog. Heliumnanotröpfchen besitzt bei ultrakalten Temperaturen seltsame Eigenschaften: Es ist supraflüssig, d.h. es hat keine Reibung. „Ein Molekül kann daher reibungslos in dem Heliumnanotröpfchen rotieren“, erklärt Prof. Havenith-Newen, „und das konnten wir beim NO direkt beobachten.“ Während in normalen Molekülen nur gepaarte Elektronen auftreten, handelt es sich beim NO um ein „Radikal“: Es hat ein einzelnes ungepaartes Elektron, was typisch ist für besonders reaktive Moleküle. Erstmals konnten die Chemiker detailliert untersuchen, wie das Heliumnanotröpfchen die Elektronen beeinflusst – nämlich fast gar nicht: Der infrarote Fingerabdruck des NO im Heliumnanotröpfchen ist fast identisch mit dem Fingerabdruck des NO Moleküls im Vakuum.

Nanolabor für die Zukunft

Damit eröffnen sich neue Möglichkeiten für die Zukunft: „Supraflüssige Heliumnanotröpfchen sind Erfolg versprechende Nanolaboratorien, womit man chemische Reaktionen bei ultrakalten Temperaturen untersuchen kann“, so Prof. Havenith-Newen. Außerdem zeigte das Infrarotspektrum die seltsame Quantennatur des supraflüssigen Heliumnanotröpfchens.

Titelaufnahme

K. von Haeften, A. Metzelthin, S. Rudolph, V. Staemmler, M. Havenith, et al.: High-resolution spectroscopy of NO in helium droplets: A prototype for open shell molecular interactions in a quantum solvent. In: Physical Review Letter, Vol. 95, doi: 10.1103/PhysRevLett.95.215301

Weitere Informationen

Prof. Dr. Martina Havenith-Newen, Lehrstuhl für physikalische Chemie II, NC 7/72, Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-24249, Fax: 0234/32-14183, E-Mail: martina.havenith@rub.de

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer