Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der aufwändige Weg zum Saturn und seinem Mond "Titan"

07.11.2005


Würzburger Weltraum-Experte spricht am 9. November, 17 Uhr im Ernst-Abbe-Kolloquium in Jena



Sieben Jahre hat es gedauert, bis die Raumsonde den "Titan" erreicht hat. Jenen Mond des Saturn, den zuvor kein Mensch wirklich gesehen hatte, da seine Atmosphäre aus blickdichten Methan-Wolken besteht. Erst die Cassini/Huygens-Mission, 1997 gestartet und vor nicht einmal einem Jahr auf Titan angekommen, ermöglicht digitale Blicke auf die Oberfläche. Bilder von bizarren Landschaften aus Eis und Gestein hat die zweiteilige Raumsonde auf die Erde gefunkt. Wegen der vorherrschenden eisigen Temperaturen (ca. minus 180 °C) zwar nur 70 Minuten lang, dies reichte aber aus, um uns deutliche Vorstellungen über den weit entfernten Mond zu vermitteln.



Solche Bilder mit Flüssen und Seen auf dem Titan sind am kommenden Mittwoch (9.11.) im Ernst-Abbe-Kolloquium, das die Friedrich-Schiller-Universität gemeinsam mit der Ernst-Abbe-Stiftung veranstaltet, zu sehen. Um 17.00 Uhr spricht der Würzburger Roboter- und Weltraumexperte Prof. Dr. Klaus Schilling im Zeiss-Planetarium (Am Planetarium 5) über "Die Cassini/Huygens-Mission zum Saturnmond Titan". Die Öffentlichkeit ist zu diesem allgemeinverständlichen Vortrag herzlich eingeladen, der Eintritt ist frei.

Mit der Cassini/Huygens-Mission werden der Saturn und seine Monde erforscht. Der Cassini-Orbiter, der mindestens vier Jahre den zweitgrößten Planeten im Sonnensystem umrunden soll, brachte die Kapsel Huygens bis an ihr Ziel. Dies erreichte sie autonom am 14. Januar 2005, als sie in die Titanatmosphäre eintrat und dabei wichtige Daten über deren Zusammensetzung sammelte. Bereits zuvor waren dort organische Moleküle nachgewiesen worden. Jetzt konnten auch Aerosole gemessen werden. Die Atmosphäre hat einen Zustand, der dem auf der Erde vor etwa drei bis vier Milliarden Jahren gleicht.

Diese Expedition der europäischen (ESA), italienischen (ASI) und der amerikanischen Weltraumagenturen (NASA) in die Tiefen des Raums gehört zu den teuersten und ambitioniertesten Projekten. Doch das Ergebnis beweist: Der Aufwand hat sich gelohnt. Wie schwierig es war, die optimale Flugbahn zu berechnen und welche enormen technischen Hürden gemeistert werden mussten, bevor die einmaligen Messergebnisse und Bilder die Erde erreichen konnten, wird Prof. Schilling darlegen. Der Informatiker, der früher in der Raumfahrtindustrie tätig war, entwickelte das adaptive Abstiegssystem der Huygens-Sonde. Ein Schwerpunkt seiner Forschungen liegt bei Kontrollsystemen für autonome und ferngesteuerte Roboter.

Neben den faszinierenden Bildern vom Titan und dem anstrengenden Weg bis dahin wird der Würzburger Professor für Robotik und Telematik in der Diskussion sicher auch auf den Piko-Satelliten "UWE-1" (Universität Würzburg Experimentalsatellit) eingehen, den er mit Studenten gebaut hat. Am 28. Oktober 2005 wurde der 10 cm große würfelförmige Satellit erfolgreich ins All geschickt und funktioniert ungestört, während der Kontakt zum - ebenfalls von Studenten aus ganz Europa gebauten - Trägersatelliten "SSETI-Express" verloren ging. In Jena wird Prof. Schilling sicher Neues über die Zukunft dieses Satellitenprojektes erzählen.

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Cassini/Huygens-Mission Mond Saturn Titan

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmische Katastrophe bestätigt Einsteins Relativitätstheorie
10.07.2020 | Max-Planck-Institut für Physik

nachricht Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen
09.07.2020 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics