Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

NEST-"Wärme" für TU-Forschergruppe

23.05.2005


Peter Schattschneider und Cécile Hébert, beide Physiker an der Technischen Universität Wien, haben kürzlich ihre Kollegen mit der Behauptung überrascht, dass Zirkulardichroismus in einem handelsüblichen Transmissionselektronenmikroskop beobachtet werden kann. Bisher hatte man angenommen, dass das - wenn überhaupt - nur mit einem Strahl spinpolarisierter Elektronen möglich ist. Für die Praxis bedeutet diese Forschungssensation, dass ein neuer Weg zur Darstellung magnetischer Strukturen von Oberflächen und dünnen Schichten im Nanometerbereich beschritten werden kann. Noch dazu im Vergleich zu herkömmlichen Methoden wesentlich kostengünstiger.



Die Ausgangslage



X-Ray Magnetic Circular Dichroism (XMCD) ist eine in den 80er-Jahren entwickelte Methode zur Untersuchung magnetischer Eigenschaften. Dabei wird ein zirkular polarisierter Röntgenstrahl in dem untersuchten Material entsprechend der Richtung des Magnetfeldes unterschiedlich absorbiert. Das XMCD-Verfahren hat aber zwei schwerwiegende Nachteile: die Auflösung ist für die Analyse moderner nanostrukturierter Bauteile nicht gut genug, und man braucht ein Synchrotron - eine großtechnische Anlage, von denen es weltweit nur sehr wenige gibt.

Auswege dank Energy Loss Magnetic Chiral Dichroism im EU-NEST-Programm

Peter Schattschneider und Cécile Hébert, beide am Institut für Festkörperphysik der TU Wien, waren davon überzeugt, dass man den gleichen Effekt auch mit einem Transmissionselektronenmikroskop (TEM) erzielen kann. Sie werden diese neue Methode im Projekt CHIRALTEM untersuchen. Das ist ein in der Projektschiene "Neue und sich abzeichnende wissenschaftliche und technologische Entwicklungen" (NEST) laufendes "high-risk"-Forschungsprojekt im 6. EU-Rahmenprogramm.

Ziel der EU-NEST-Förderung ist die unkonventionelle und visionäre Forschung, die der europäischen Wissenschaft und Technologie den Zugang zu den Forschungsfeldern von morgen eröffnet. Darüber hinaus sollen Forschungsvorhaben unterstützt werden, die sich mit bisher unbekannten oder neuartigen Risikopotenzialen und Gefahren für die Gesellschaft befassen. Projekte sollen gewagt sein, daher "high risk", das Forschungsziel nicht zu erreichen. NEST ist auf Flexibilität ausgelegt. Interdisziplinäre Forschungsvorhaben sind daher besonders willkommen.

"Know-how gepaart mit Intuition, und das mit einfachen Mitteln", so die Antwort Schattschneiders auf die Frage, wie es zum Durchbruch kam. "Wir hatten die Umsetzung der Forschungsidee im Kopf. Eine kurze Rechnung zeigte, dass es möglich sein sollte, aber das Experiment konnten wir noch nicht durchführen".

Gute Voraussetzungen also für die Akzeptanz als EU-NEST-Projekt - eine originelle Idee und eine riskante Umsetzung. Die EU-Statistik zeigt außerdem ein weiteres Risikopotential in der Antragsphase: die Erfolgsquote bewilligter Projekte lag im ersten NEST-call bei 6 Prozent (!).

10 Mal kleinere magnetische Strukturen werden erkennbar sein

Ist das neue Verfahren, das von seinen Wiener Entdeckern "Energy Loss Magnetic Chiral Dichroism (EMCD)" getauft wurde, erfolgreich, werden sich 10 Mal kleinere magnetische Strukturen erkennen lassen, als das mit den derzeit besten Röntgenstrahl-Verfahren möglich ist. Aufgrund ihrer technologischen Beschaffenheit - mit Transmissionselektronenmikroskopen (TEM) können bis zu 100 Nanometer "dicke" Materialien mit atomarer Auflösung untersucht werden - eignet sich die Methode vor allem für die Analyse magnetischer Filme. Ist das Know-How für den experimentellen Aufbau einmal vorhanden, können neben den magnetischen auch die morphologischen, kristallographischen und chemischen Eigenschaften einer Probe im Transmissionselektronenmikroskop gewissermaßen in einem Durchgang untersucht werden.

Nach 10 Monaten erfolgreich

Für manche WissenschafterInnen erstaunlich, ist es dem Forscherteam bereits nach 10 Monaten gelungen, ihre Voraussage experimentell nachzuweisen. Dadurch eröffnen sich weitere Forschungsperspektiven in der Nanotechnologie, insbesondere im Zusammenhang mit "Spintronics". Das ist jene sehr junge Technologie, die sich sowohl die magnetischen Eigenschaften von Elektronen ("Spin") als auch ihre elektrischen Ladungen zunutze macht. Diese Technologie wird bereits in Schreib- und Leseköpfen von Magnetplatten eingesetzt, und sie wird in den nächsten Jahren voraussichtlich eine Schlüsselrolle in der Sensorik, Telekommunikation und Informationsverarbeitung spielen.
Auch in der Biologie und Biotechnologie könnte die neue Methode wichtige Impulse liefern, z. B. bei der Untersuchung magnetotaktischer Bakterien oder bei der Klärung offener Fragen beim magnetischen "Kompass"-Gefühl der Tauben.

Gemeinsam zum Ziel

Die erste Aufgabe des EU-Projekts CHIRALTEM (Chiral dichroism in the transmission electron microscope) - Laufzeit 36 Monate, Start war im Juli 2004, Projektvolumen Euro 890.000,- bestand darin, Zirkulardichroismus im TEM experimentell nachzuweisen. Die Wiener Gruppe verwendete dazu einfache ferromagnetische Materialien (Eisen und Nickel). Nachdem der Nachweis des Effekts gelungen ist, wird jetzt getestet, wie das Experiment optimiert werden kann. Danach ist geplant, hartmagnetische Materialien und nanostrukturierte Bauteile, wie sie für "Spinvalves" verwendet werden, zu untersuchen.

Die Forschergruppe in Regensburg erforscht zeitgleich, wie man die Materialproben vorbereiten und die Magnetfelder im Mikroskop kontrollieren kann, während das Team in Prag vergleichende Computersimulationen durchführt. Die Gruppe in Dresden studiert einen alternativen experimentellen Aufbau, der möglicherweise Vorteile bietet.

Die Kollegen in Triest haben inzwischen Experimente am Synchrotron durchgeführt, um beide Methoden miteinander vergleichen zu können. Durch die Kombination zweier Techniken erwartet sich das Team einen enormen Synergieeffekt. Eines der Projektziele ist es dann auch, den wissenschaftlichen Kontakt zwischen zwei bisher nur schwach kommunizierenden Forschungsrichtungen - Elektronenmikroskopie und Synchrotron - zu verstärken.

Rückfragehinweis:
Univ.Prof. Dipl.-Ing. Dr. Mag. Peter Schattschneider
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hptstr. 8-10, A-1040 Wien
Tel.: +43-1-58801x13722
Fax: +43-1-58801-13798
E-Mail schattschneider@ifp.tuwien.ac.at

Mag. Karin Peter | idw
Weitere Informationen:
http://www.tuwien.ac.at
http://www.chiraltem.physics.at/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics