Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn sich viele Teilchen zu einer großen Welle zusammentun

07.08.2001


Bei sehr tiefen Temperaturen, dicht am absoluten Nullpunkt, kann unter bestimmten Bedingungen ein besonderer Zustand von Materie auftreten. In einem spektakulären Experiment hat der Physiker Prof. Claus Zimmermann mit seiner Arbeitsgruppe nun ein solches Bose-Einstein-Kondensat an der Oberfläche eines Mikrochips erzeugt und erstmals einen "Atomchip" realisiert. Mit diesem Durchbruch werden die Kondensate auch technisch nutzbar.

Tübinger Physiker nutzen Bose-Einstein-Kondensate zur Entwicklung von Atomchip

Physik wird manchmal erst bei sehr tiefen, unwirtlichen Temperaturen spannend. Bei minus 200 Grad Celsius tritt zum Beispiel das Phänomen der Supraleitung auf: Manche Metalle setzen dem elektrischen Strom in der Kälte keinen Widerstand mehr entgegen. Zu den Effekten, die nur unter solch extremen Bedingungen zu erzeugen sind, gehört auch das so genannte Bose-Einstein-Kondensat. Die Materie befindet sich dabei, millionstel Grad Celsius über dem absoluten Nullpunkt, in einem ungewöhnlichen Zustand, der mit den bekannten Begriffen fest, flüssig oder gasförmig nicht zu beschreiben ist. Prof. Claus Zimmermann, Jozsef Fortagh und Herwig Ott vom Physikalischen Institut der Universität Tübingen haben bei ihren Experimenten eine Methode entwickelt, mit der sie ein Bose-Einstein-Kondensat mit einem Mikrochip verbinden können. Von der neuen Technologie versprechen sich die Physiker Fortschritte in der Grundlagenforschung, aber auch neue Möglichkeiten für die Herstellung von Kraftdetektoren und Ansatzpunkte für die Verwirklichung des physikalischen Traums vom Quantencomputer.

Eins der schwierigsten Probleme, ein Bose-Einstein-Kondensat zu erzeugen, sind die sehr tiefen Temperaturen. "Natürlicherweise gibt es diese Bedingungen nirgends auf der Erde, das ist auch kälter als das Weltall", erklärt Zimmermann. Die Materie muss sehr stark gekühlt werden und zieht sich dabei zusammen. Die Tübinger verwenden bei ihren Forschungen Rubidium, ein silberglänzendes, sehr weiches Alkalimetall, das bei Raumtemperatur zähflüssig ist, ähnlich wie Quecksilber. Die tiefen Temperaturen erreichen die Tübinger über Kühlung des Rubidiums mit Laserlicht und in einem zweiten Schritt durch Verdampfungskühlung. Bei der Abkühlung auf Temperaturen dicht am absoluten Nullpunkt werden die Rubidiumatome zu kleinen Wolken mit bis zu 50 Millionen Atomen, einem winzigen Tröpfchen von der Größe eines Haardurchmessers. "In diesem Zustand halten wir die Atome durch Magnetfelder schwebend und berührungslos fest und isolieren sie in einer Art Thermoskanne", beschreibt Zimmermann. Das Tröpfchen kann einige Sekunden in diesem Zustand, als Bose-Einstein-Kondensat, gehalten werden - lang genug für die Experimente der Physiker, die nur Bruchteile von Sekunden dauern. "Die Besonderheit des Bose-Einstein-Kondensats ist, dass diese Tröpfchen eine ganz neue Materieform darstellen", sagt Jozsef Fortagh. Und Zimmermann setzt hinzu: "Die Atome in dem Tröpfchen verhalten sich alle gleich, wie Soldaten, die im Gleichschritt marschieren." Das Rubidium gewinnt Eigenschaften, die es im festen, flüssigen oder gasförmigen Zustand nicht hat.

Der technologische Durchbruch gelang den Tübingern, als sie das Bose-Einstein-Kondensat über der Oberfläche von einem Keramikchip herstellen und die Materie in Leiterbahnen auf dem Chip, lange feine Kanälchen, einfüllen konnten. Die extrem dünnen Kanäle werden durch winzige, stromdurchflossene Mikroleiter an der Oberfläche eines Keramikplättchens erzeugt. "Auf dem Chip kann man das Tröpfchen strukturieren, trennen und zusammenführen und dadurch für verschiedene Anwendungen beim Speichern oder Übertragen von Informationen nutzbar machen", erklärt Zimmermann. In dem Chip bilden Atome die Informationseinheiten und nicht - wie bei herkömmlichen Computern - Bits mit der "Schalterstellung" Null oder Eins. "Eigentlich denkt man, dass die ganz kalten Atome wie Kügelchen hin und her fliegen. Dann merkt man, dass es sich um Wellenpakete handelt, nicht um Kügelchen. Wenn die vermeintlichen Kügelchen aufeinandertreffen, prallen sie nicht voneinander ab, sondern legen sich wie Wellenpakete übereinander." Wenn sich zwei Flüssigkeitströpfchen überlagern, würden sie normalerweise einen großen Tropfen bilden. Beim Bose-Einstein-Kondensat gibt es beim Zusammentreffen zweier Tröpfchen dagegen Interferenzphänomene, ähnlich wie bei Licht: "Man erhält ein Streifenmuster, an einigen Stellen verdichtet sich die Materie, an anderen Stellen entsteht ein Vakuum", erklärt der Atomphysiker.

Den besonderen Zustand der Materie im tiefgekühlten Kondensat hatte der Physiker Albert Einstein bereits 1923 auf der Basis von Arbeiten des indischen Physikers Satyendra Nath Bose in der Theorie vorhergesagt. Bose hatte solche Systeme bei Photonen, den Bestandteilen jeder Strahlung wie etwa Lichtquanten, untersucht. Einstein hat die Ergebnisse auf Materieteilchen übertragen. Im Bose-Einstein-Kondensat seien Teilchen enthalten, so Zimmermann, die sich jeweils wie eine Welle verhalten, im Gleichtakt der Teilchen entstehe eine große Welle. "Einstein hat das nur als akademische Fingerübung gesehen", meint der Physiker. Einstein hätte im Experiment wohl auch nicht die notwendigen tiefen Temperaturen für Bose-Einstein-Kondensate erzeugen können. Das gelang Wissenschaftlern zum ersten Mal erst 1995, als die Kühlung über Laserlicht entwickelt worden war.

Bose-Einstein-Kondensate lassen sich nicht nur mit Rubidium, sondern auch mit chemisch verwandten Elementen wie Wasserstoff oder Lithium herstellen. Rubidium ist jedoch am besten untersucht und lässt sich mit einfachen Lasern, wie sie etwa auch in CD-Spielern verwendet werden, gut kühlen. Auch die Chips, über denen die Tübinger Physiker Bose-Einstein-Kondensate herstellen, lassen sich mit Standardtechnologien herstellen. Sie hoffen, dass mit Hilfe der tiefgekühlten Kondensate auch besonders leistungsfähige Quantencomputer entwickelt werden könnten. Solche Computer sind bisher nur graue Theorie. Doch an dem Forschungsgebiet arbeiten zahlreiche Wissenschaftler. Noch wird nach einem System gesucht, mit dem sich ein Quantencomputer realisieren ließe. "Mit unserer Entwicklung sind Bose-Einstein-Kondensate ein heißer Kandidat", meint Zimmermann.

In dem von den Tübingern entwickelten "Atomchip" bewegen sich die Materiewellen wie Licht in einer Glasfaser. Bisher war das Interesse an Bose-Einstein-Kondensaten "vor allem akademisch", so Zimmermann. Die Forscher setzen nun auf die Entwicklung atomoptischer Bauelemente, mit denen Drehungen, Beschleunigungen und Kräfte mit bisher unerreichter Empfindlichkeit gemessen werden könnten, zum Beispiel auch zur Messung der Schwerkraft. "Solche Detektoren könnten zum Beispiel bei der Suche nach Erdölvorkommen vom Hubschrauber aus eingesetzt werden." Bis zu solchen Anwendungen ist es jedoch noch ein weiter Weg. Die Tübinger Physiker wollen zunächst die ungewöhnlichen Interferenzphänomene der Bose-Einstein-Kondensate genauer untersuchen, die auftreten, wenn das Kondensat stark in die Länge gezogen und aufgeteilt wird. "Die Kanälchen auf dem Chip sind zwar höchstens zwei Zentimeter lang, doch im Größenvergleich wird das Kondensat so lang gezogen wie eine vier Meter breite Autobahn, die tausend Kilometer lang ist", erklärt Zimmermann. Nach Einschätzung der Physiker behält das Kondensat jedoch in einem weiten Bereich die interessanten quantenmechanischen Eigenschaften.

Michael Seifert | idw

Weitere Berichte zu: Kondensat Materie Rubidium Welle

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht TU Dortmund erstellt hochgenaues 3D-Modell vom Rover-Landeplatz auf dem Mars
18.09.2019 | Technische Universität Dortmund

nachricht Rostock Scientists Achieve Breakthrough in Quantum Physics
18.09.2019 | Universität Rostock

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics