Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herkunft des Sternenstaubs im frühen Universum bleibt rätselhaft

17.12.2004


Der Supernova-Überrest Cassiopeia A, aufgenommen mit dem Weltraum- Observatorium SPITZER bei einer Wellenlänge von 24 Mikrometern. Dieses Infrarotbild zeigt die Emission des von der Supernova erzeugten warmen Staubes, der eine Gesamtmasse von nur 0,002 Sonnenmassen aufweist.
Bild: Max-Planck-Institut für Astronomie


Die Umgebung von Cas A, gesehen in der ISOPHOT-Zufallsdurchmusterung bei einer Wellenlänge von 170 Mikrometern. Bei dieser Wellenlänge im fernen Infraroten ist die Emission sehr kalten Staubes zu erkennen. Cas A (im Zentrum) ist offensichtlich überdeckt von einer ausgedehnten Staubwolke im Vordergrund. Die Konturen innerhalb des schwarzen Rechtecks zeigen Messungen von SPITZER bei 160 Mikrometer, die mit den ISO-Messungen exzellent übereinstimmen.
Bild: Max-Planck-Institut für Astronomie


Frühe Supernovae sind offenbar nicht Quelle des ersten Staubs im Kosmos, wie Infrarot-Beobachtungen eines deutsch-amerikanischen Astronomenteams zeigen


Manche Astronomen glaubten seit vergangenem Jahr zu wissen, wie die großen Mengen Staub entstanden sind, welche die frühesten Quasare umgeben: Sie sollten sich bei den Supernova-Explosionen der ersten Sterngenerationen nach dem Urknall gebildet haben. Das wurde aus Beobachtungen des angeblich "stark rauchenden" Supernova-Überrests Cassiopeia A geschlossen. Nun zeigen neue, von Wissenschaftlern des Max-Planck-Instituts für Astronomie, der University of Arizona sowie des Space Science Institute in Boulder (beide USA) mit den Infrarot-Satelliten ISO und SPITZER gewonnene Beobachtungen, dass dieser wichtige Befund nicht zu halten ist. Der Staub gehört vielmehr zu einer interstellaren Wolke, die weiter im Vordergrund steht und Cassiopeia A überdeckt (Nature, 8. Dezember 2004).

Die Frage nach dem Ursprung des ersten Staubkörner im Kosmos hat grundlegende Bedeutung. Bekanntlich gab es am Anfang unseres Universums nur Wasserstoff, also ein Gas aus den einfachsten Atomen. Schwerere Elemente wie Kohlenstoff, Sauerstoff, Silizium usw. bis hin zum Eisen wurden erst im Inneren der Sterne der ersten Generation synthetisiert. Alle noch schwereren Elemente entstanden sogar erst bei Supernova-Explosionen.


Die schwereren Elemente stehen also erst für den Aufbau der Sterne späterer Generationen zur Verfügung. Staubkörner, die ersten Festkörper im Kosmos, bestehen aus diesen schwereren Elementen und bilden sich in den kühlen Winden aus, die von mehrere Milliarden Jahre alten, sonnenähnlichen Sternen ausgehen - oder aber auch, bereits nach wenigen Millionen Jahren - in Supernova-Explosionen. Erst dann steht der Staub zur Verfügung für den Aufbau von Sternen späterer Generationen und - aus menschlicher Sicht besonders wichtig - ihrer eventuellen Planetensystemen.

In den letzten Jahren haben Astronomen in der Umgebung der fernsten Quasare, die wir im jungen Universum, nur etwa 700 Millionen Jahre nach dem Urknall, beobachten, große Mengen interstellaren Staub entdeckt. Damit stellte sich das Problem: Wie konnte all dieser Staub so schnell entstehen? Offenbar kommen dafür nur die Supernova-Explosionen in Frage, da das Universum damals zur Ausbildung kühler Winde alter sonnenähnlicher Sterne noch viel zu jung war. Aber waren die Supernovae tatsächlich so ergiebig?

Eine erste Antwort auf diese Frage gab ein 2003 erschienene, viel zitierte wissenschaftliche Arbeit [1]: Zwar galten bisher Supernova-Überreste als staubarm, da sich in ihnen im kurzwelligen Infrarotbereich nur wenig warmer Staub nachweisen ließ. Die Autoren beobachteten aber in Richtung auf den Supernova-Überrest Cassiopeia A (kurz: Cas A) starke thermische Emission im Submillimeterbereich, wie sie für große Mengen kalten interstellaren Staubes charakteristisch ist. Sie ordneten diesen Staub der Umgebung von Cas A zu und glaubten, damit auch eine Erklärung für das Rätsel der großen Staubmengen im frühen Universum gefunden zu haben: Anscheinend produzierten Supernovae vom Typ II (zu denen die Supernova in Cas A gehört) tatsächlich genügend viel Staub. Eine Supernova-Explosion vom Typ II ereignet sich, wenn der Kernbereich eines extrem kurzlebigen, massereichen Sterns am Ende seiner Entwicklung in sich zusammenstürzt und dabei große Mengen an Gravitationsenergie freisetzt, die den größten Teil des Sterns explosionsartig auseinander fliegen lässt.

Doch der Supernova-Überrest Cassiopeia A wurde auch vom Infrarotsatelliten ISO im Rahmen einer Himmelsdurchmusterung im fernen Infraroten - der so genannten ISO- Zufallsdurchmusterung bei einer Wellenlänge von 170 Mikrometern beobachtet. Bei dieser Wellenlänge emittiert sehr kalter Staub (T » 10 … 20 Kelvin oder -250 … -260 °C) seine "Wärmestrahlung". Auf diese Weise haben die Wissenschaftler des Max-Planck-Instituts für Astronomie in Heidelberg gemeinsam mit ihren amerikanischen Kollegen eine kalte interstellare Wolke entdeckt, die Cas A überdeckt. Sie vermuten daher, die 2003 gemessene Submillimeter-Strahlung könnte eigentlich nur von dieser Wolke stammen, die zwar in Richtung des Supernova-Überrests, aber weit im Vordergrund steht und nicht mit der Supernova assoziiert ist. Diese Vermutung haben die Astronomen noch durch Beobachtungen mit dem weltraumgestützten Infrarotteleskop SPITZER erhärtet und inzwischen in der Zeitschrift Nature veröffentlicht [2].

Cas A ist der jüngste bekannte Supernova-Überrest in unserer Milchstraße. Er steht etwa 11.000 Lichtjahre entfernt, jenseits des staubreichen Perseus-Spiralarms. Die Forscher vermuten, dass eben diese im Vordergrund gelegenen Staubwolken verhindert haben, dass die Astronomen des späten 17. Jahrhunderts die Supernova-Explosion beobachten konnten, deren Überrest Cas A heute ist. Cas A steht der Erde so nahe, dass die Supernova für einige Zeit als der hellste Stern am ganzen Himmel hätte erscheinen müssen, doch die Staubwolke im Perseus-Arm hat sie verdeckt.

Das deutsch-amerikanische Team kartierte Cas A bei 160 Mikrometern Wellenlänge unter Einsatz des Weltraumteleskops SPITZER und seines abbildenden Photometers und verglich diese Ergebnisse mit einer im Radiobereich erstellten Karte derselben Himmelsregion. Aus diesem Vergleich ergibt sich, dass der Staub in den interstellaren Wolken praktisch für die gesamte Infrarotstrahlung verantwortlich ist. Damit kann man keine wesentlichen Mengen Staub mit dem Supernova-Überrest Cas A assoziieren.

Daher müssen sich die Astronomen erneut auf die Suche machen, um die ersten Staubquellen im Kosmos zu identifizieren. Gelingt das, so werden wir wissen, wie und wo die aller ersten Sterne entstanden sind, oder ob es außer den stellaren noch andere, bisher unbekannte Mechanismen gibt, Sternenstaub zu erzeugen. Die Antwort wird unser Verständnis der frühesten Entwicklung der Galaxien wesentlich vertiefen.

Originalveröffentlichung:

Loretta Dunne, Stephen Eales, Rob Ivison, Haley Morgan, Mike Edmunds
Type II supernovae as a significant source of interstellar dust
Nature, 424, pp. 285-287 (2003)

Oliver Krause, Stephan M. Birkmann, George H. Rieke, Dietrich Lemke, Ulrich Klaas, Dean C. Hines, Karl D. Gordon
No cold dust within the supernova remnant Cassiopeia A
Nature, 432, pp. 596-598, 8. Dezember 2004

Weitere Informationen erhalten Sie von:

Prof. Dietrich Lemke
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-259
E-Mail: lemke@mpia.de

Dr. Jakob Staude
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-229
E-Mail: staude@mpia.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpia.de

Weitere Berichte zu: Cassiopeia Supernova-Explosion Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

nachricht Weltrekord: Schnellste 3D-Tomographien an BESSY II
08.08.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Arctic Ocean 2018 - Forscher untersuchen Wolken und Meereis in der Arktis

"Arctic Ocean 2018": So heißt die diesjährige Forschungsexpedition des schwedischen Eisbrechers ODEN in der Arktis, an der auch ein Wissenschaftler der Universität Leipzig beteiligt ist. Noch bis zum 25. September wollen die etwa 40 Forscher an Bord vor allem das mikrobiologische Leben im Ozean und im Meereis untersuchen und wie es mit der Wolkenbildung in der Arktis zusammenhängt.

Während der Fahrt durch die Arktis, die Ende Juli gestartet ist, sollen im Rahmen der Kampagne MOCCHA 2018 (Microbiology-Ocean-Cloud-Coupling in the Hight...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

Herausforderung China – Wissenschaftler aus der ganzen Welt diskutieren miteinander auf UW/H-Tagung

03.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltkleinster Transistor schaltet Strom mit einzelnem Atom in festem Elektrolyten

13.08.2018 | Energie und Elektrotechnik

Your Smartphone is Watching You: Gefährliche Sicherheitslücken in Tracker-Apps

13.08.2018 | Informationstechnologie

Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können

13.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics