Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Woraus sich die von Jets ausgestoßene Materie zusammensetzt

27.09.2004


Vom Hubble Space Telescope (HST) aufgenommenes, optisches Bild des zentralen Kernbereichs und des Jets der Radiogalaxie M 87. Blasare sind Radiogalaxien mit kleinem Sichtwinkel zur Jetachse. Bild: NASA and The Hubble Heritage Team (STScI/AURA).


Astrophysikerin untersucht Hochenergiestrahlungsprozesse. Lise-Meitner Habilitationsstipendium an RUB-Forscherin

... mehr zu:
»Elektron »Photon »Strahlung »Teilchen

Jets sind im All eine der prominentesten Quellen energiereicher Gammastrahlung. Wie genau aber diese Strahlung zustande kommt, ist bisher nicht bekannt. Der Frage, woraus sich die vom Jet ausgestoßene Materie zusammensetzt und wie dabei die energiereiche Strahlung entsteht, geht Dr. Anita Reimer (Lehrstuhl für Theoretische Physik IV der Ruhr-Universität, Prof. Dr. Reinhard Schlickeiser) nach. Bei ihrem Forschungsvorhaben wird sie für die nächsten zwei Jahre mit dem Lise-Meitner-Stipendium des NRW-Wissenschaftsministeriums unterstützt. Fünf der dieses Jahr insgesamt 25 geförderten Wissenschaftlerinnen forschen an der RUB.

Prominenteste Quelle energiereicher Gammastrahlung


Jets von sog. Aktiven Galaktischen Kernen (AGN) machen sich bemerkbar durch gerichtete Strahlung aus Jet-Emissionsknoten von der Größe unseres Sonnensystems, die sich mit relativistischer Geschwindigkeit, d.h. fast so schnell wie das Licht, entlang der Jetachse bewegen. Extragalaktische Jets sind die prominentesten Quellen energiereicher Gammastrahlung oberhalb von etwa einem Mega-Elektronen-Volt: das millionenfache der Energie, welches ein Elektron beim Durchlaufen einer Ein-Volt Spannung gewinnt. Ist ein Jet nahezu direkt auf den Beobachter gerichtet, spricht man von einem "Blasar". Man nimmt an, dass diese Jets durch ein supermassives schwarzes Loch mit der Masse von hundert Millionen bis einer Billion Sonnenmassen im Innern des aktiven galaktischen Kerns angetrieben sind. "Das ausgestoßene Jetmaterial selbst muss größtenteils aus relativistischen Teilchen bestehen", so Dr. Reimer. "Um was genau es sich dabei handelt, versuchen Wissenschaftler seit der Entdeckung dieser Blasare im Gammastrahlungsbereich herauszufinden."

Beobachtungen von Blasaren geben nur Puzzlestücke preis

Anhand von rapiden Änderungen der Gammastrahlungs-Intensität innerhalb kürzester Zeit und den beobachteten Geschwindigkeiten der Emissionsknoten schätzen die Forscher die Größe des Emissionsgebietes und seine Geschwindigkeit ab. Messungen der Strahlungsintensität und der Photonenenergie (sog. Spektren) zeigen, dass die abgestrahlte Energieleistung in zwei Wellenlängenbereichen besonders ausgeprägt ist. Die Strahlung im niederenergetischen Wellenlängenbereich lässt sich einfach erklären: Polarisationsmessungen weisen auf eine Synchrotronstrahlung hin, d.h. in einem Magnetfeld spiralende Teilchen, die ihre Energie durch Strahlung verlieren. Die Existenz von Magnetfeldern in den Jet-Emissionsgebieten gilt daher als gesichert. Aussagekräftige Polarisationsmessungen im hochenergetischen Gammastrahlungsbereich sind mit den heutigen Instrumenten aber noch nicht möglich.

Relativistisches Paarplasma ...

Theoretiker haben zwei Möglichkeiten zur Erklärung der Hochenergiekomponente. Falls das Jetplasma größtenteils aus relativistischen Elektronen und Positronen besteht (ein sog. Paarplasma), so lässt sich die Gammastrahlung als sog. inverse Compton Strahlung erklären: Photonen mit niedriger Energie wechselwirken mit freien relativistischen, also hoch-energetischen, Elektronen, und nehmen dabei einen Großteil der Elektronenenergie auf: sie werden zu Gammaphotonen. Experten sprechen vom "leptonischen Blasar-Emissionsmodell".

... oder doch "gewöhnliches" Elektron-Proton-Plasma?

Das andere mögliche Szenario beschreiben "hadronische Blasar-Emissionsmodelle": Existieren hoch-relativistische Protonen im Jetplasma, deren Teilchenenergie weit über eine Million Giga-Elektronen-Volt hinausgeht, wechselwirken die Protonen mit den niederenergetischen Photonen und können so eine Vielzahl von instabilen Teilchen produzieren. Diese instabilen Teilchen zerfallen so lange, bis stabile Teilchen die Produktion beenden. Dies sind neben hochenergetischen Photonen auch Protonen, Neutronen, Elektronen, Positronen und Neutrinos. Sog. Paarkaskaden, die die Photonen und die Strahlung der geladenen, (noch) nicht zerfallenen Teilchen einleiten, überführen die Energie der Photonen vom Ultrahochenergiebereich (10^15 bis 10^20 Elektronen-Volt) in den für Gammastrahlungsinstrumente "sichtbaren" Bereich.

Beobachtungen sollen Theorien überprüfen helfen

Beide Emissionsmodelle können die bisherigen Beobachtungsbefunde erklären. "Es gilt also, geeignete Beobachtungsstrategien zu entwickeln, die auf unterschiedlichen, überprüfbaren Voraussagen beider Modelltypen basieren", erläutert Dr. Reimer. Dazu suchen die Forscher das gesamte elektromagnetische Spektrum nach Hinweisen wie z.B. bestimmte spektrale Variabilitätsmustern durch. In weltweit initiierten Multifrequenz-Kampagnen, welche simultane Messungen in einem möglichst weiten Frequenzbereich bereitstellen, sollen die entwickelten diagnostischen Methoden Anwendung finden, um letztendlich die Frage nach der Natur des Jetplasmas zu klären.

Frauen bei der Habilitation unterstützen

Dr. Anita Reimer widmet sich am Lehrstuhl für Theoretische Physik IV (Weltraum- und Astrophysik) in einer kleinen Forschergruppe Fragestellungen der Hochenergieemission kosmischer Objekte. Die Gruppe ist Mitglied des europäischen Luftschauer-Gammastrahlungsexperiments H.E.S.S. in Namibia. Mit dem Lise-Meitner-Stipendium fördert das NRW-Wissenschaftsministerium junge Wissenschaftlerinnen auf ihrem Weg in die Spitzenforschung. Die Frauen werden für jeweils zwei Jahre bei ihrer Habilitation unterstützt, mit der Wissenschaftler den Nachweis ihrer Lehrbefähigung erbringen und sich um eine Professur an Hochschulen bewerben können.

Weitere Informationen

Dr. Anita Reimer, Lehrstuhl für Theoretische Physik IV, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, 44780 Bochum, NB 7/69, Tel. 0234/32-27796, E-Mail: afm@tp4.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Berichte zu: Elektron Photon Strahlung Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europaweit erste Patientin mit neuem Hybridgerät zur Strahlentherapie behandelt

19.07.2018 | Medizintechnik

Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum

19.07.2018 | Biowissenschaften Chemie

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics