Molekültrennung mit geformten Laserpulsen

Physiker entwickeln neues Verfahren, das evolutionäre Strategie nutzt

Es war die Natur, die als Vorbild für die Entwicklung einer neuen Methode diente, mit der Moleküle und Isotope getrennt werden können. Für das patentreife Verfahren, das Experimentalphysiker an der Freien Universität Berlin entwickelt haben, wenden die Forscher evolutionäre Optimierungsstrategien an. Das Team um Dr. Albrecht Lindinger und Prof. Dr. Ludger Wöste variiert die Form der Laserpulse so lange, bis eine optimale Trennung der Moleküle erreicht wird. Diese überraschend effektive Methode erlaubt es im Prinzip, jedes Molekülgemisch ohne vorherige Kenntnis der molekularen Eigenschaften nach seinen Komponenten aufzuteilen. Praktische Anwendungen dieses gerade erst veröffentlichten Ergebnisses sind in den Bereichen Pharmazie und Medizintechnik zu erwarten. Die Erfindung ist von der Freien Universität Berlin beim Deutschen Patent- und Markenamt und gerade kürzlich auch beim US-Patentamt eingereicht worden.

Um Moleküle oder Isotope zu trennen, bedarf es oft langwieriger, komplizierter Verfahren zur räumlichen Separierung (z.B. Zentrifugentechniken), die erst nach Ausführung mehrerer Einzelschritte zum Erfolg führen. Auch die bislang verwendeten Laser-Trennmethoden mit Hilfe kontinuierlicher Strahlung, die auf kleinen spektralen Linienverschiebungen beruhen, sind relativ aufwendig, da sie auf eine genaue Kenntnis der molekularen Eigenschaften angewiesen sind. Zudem erlauben sie nur, einen gewissen Anteil des Gemisches zu trennen. Hier bietet sich der von den Forschern der Freien Universität gewählte neue Ansatz an. Sie nutzen das Laserlicht von extrem kurzen Pulsen aus, das einen breiten Spektralbereich überdeckt, und überlassen es einem evolutionären Algorithmus, die optimale Form des Laserpulses in der Zeit und Frequenz selbstständig zu finden. Auf diese Weise könnte prinzipiell jedes molekulare Gemisch ohne genaues vorheriges Wissen seiner Eigenschaften in einem Schritt separiert werden.

Das neuartige Verfahren beruht im Wesentlichen auf der Verwendung eines Pulsformers, der das La-serlicht mit Hilfe eines Gitters in seine Spektralfarben zerlegt. Der Pulsformer verzögert dann mit hoher Genauigkeit die Spektralfarben einzeln oder variiert sie in ihrer Intensität und führt sie anschließend mit einem zweiten Gitter zu einem geformten Puls zusammen. Die so erzeugten Pulse werden auf einen Molekularstrahl gerichtet und führen dort zur elektronischen Anregung und gegebenenfalls zur Ionisierung der Moleküle.

Das Ziel des speziell für diesen Zweck programmierten evolutionären Algorithmus ist es, die ge-wünschte Molekülsorte vorwiegend anzuregen, während die anderen Molekülsorten an einer effektiven Anregung gehindert werden. Dazu wendet er in einer Rückkopplungsschleife wiederholt aus der Natur bekannte Konzepte der Evolution an. So wird die dort auftretende Erzeugung von Nachkommen durch Vertauschen von Pulselementen, die Mutation durch Hinzufügen eines zufälligen Wertes und die so genannte Auslese der Besten durch Auswahl der effektivsten Pulse simuliert. Der auf diese Weise gefundene optimierte Puls nutzt geringe Unterschiede der Eigenschaften der beteiligten Molekülsorten – wie zum Beispiel hinsichtlich der energetischen Lage der Quantenzustände oder der Dauer der auftretenden Schwingungsperioden – optimal aus, um simultan alle auftretenden Zustände einer Molekülsorte selektiv anzuregen.

Ein weiterer Vorteil der vorgestellten Methode besteht darin, dass man zusätzlich durch eine Analyse der ermittelten optimalen Pulsform Einblick in den zugrunde liegenden Anregungsprozess selbst erhalten kann. Insbesondere können so Informationen über die Dynamik auf den Schwingungsniveaus der beteiligten elektronischen Zwischenzustände gewonnen werden. Wissenschaftlich besonders relevant ist dabei die Möglichkeit des zeitlich und spektral präzisen Ansprechens der einzelnen Schwingungsfunktionen durch die unterschiedlichen Pulskomponenten.

Mögliche Anwendungsfelder für diese Methode sind in der chemischen Industrie, der Pharmazie und der Medizintechnik zu erwarten. Insbesondere die Trennung von Molekülen, die mit anderen Verfahren schwer oder überhaupt nicht separierbar sind, könnte dort zum Einsatz kommen. Isotopenselektion für die in der Medizin verwendete so genannte Tracer-Methode, bei der schwach radioaktiv strahlende Substanzen in den Körper gebracht werden, ist da nur ein Beispiel von vielen.

Die Arbeitsgruppe um den Experimentalphysiker Prof. Dr. Ludger Wöste ist schon seit einiger Zeit in dem Bereich der optimalen Kontrolle tätig. Sie hat sich aber auch auf anderen Gebieten mit Patenten über das „Zähmen von Blitzen“ und den „Regenwächter“ einen Namen gemacht. Veröffentlichung: Phys. Rev. Lett. 93, 033001-1-4 (2004)

Weitere Informationen erteilen Ihnen gern:

Dr. Albrecht Lindinger
Institut für Experimentalphysik der Freien Universität Berlin
Tel.: 030 / 838-56120
E-Mail: lindin@physik.fu-berlin.de

Prof. Dr. Ludger Wöste
Institut für Experimentalphysik der Freien Universität Berlin
Tel.: 030 / 838-55566
E-mail: woeste@physik.fu-berlin.de

Media Contact

Ilka Seer idw

Weitere Informationen:

http://www.fu-berlin.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer