Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sonnenforschung: Helle und dunkle Flecken grenzen sich eindeutig ab

22.07.2004


Astrophysiker widerlegen mit Teleskopbildern die Annahme vom kontinuierlichen Übergang


Das schwedische Sonnenteleskop SST am Observatorium auf La Palma



Astrophysiker der Universitäten Göttingen und Graz haben bei Untersuchungen der kleinen hellen magnetischen Gebiete an der Sonnenoberfläche herausgefunden, dass diese sich von den sehr viel größeren dunklen Sonnenflecken eindeutig abgrenzen. Damit widerlegen sie die gängige wissenschaftliche Meinung, dass es einen kontinuierlichen Übergang zwischen beiden Bereichen gibt. Als Zwischenstadium galten bislang Gebiete mittlerer Größe von einigen 1.000 Kilometern Durchmesser, die weder hell noch dunkel sind. "Unsere Forschungen verweisen hingegen darauf, dass hier eine ,Lücke’ klafft, die auch im Magnetfluss nachweisbar ist", so Dr. Eberhard Wiehr, Akademischer Direktor an der Göttinger Universitäts-Sternwarte. Der Wissenschaftler untersuchte die hellen Magnetstrukturen mit dem schwedischen Sonnenteleskop SST am Observatorium auf La Palma, das Digitalbilder von bisher unerreichter Trennschärfe lieferte. Die Ergebnisse wurden in der Online-Ausgabe der Fachzeitschrift Astronomy & Astrophysics veröffentlicht.



Die großen dunklen Flecken auf der Sonne erreichen einen Durchmesser von bis zu 100.000 Kilometern und weisen starke Magnetfelder auf. Rund um diese Sonnenflecken sind kleine magnetische Gebiete gelagert, die heller als ihre Umgebung sind und eine maximale Größe von 300 Kilometern Durchmesser haben. Die Wissenschaftler stellten fest, dass in diesem Größenbereich alle magnetischen Strukturen etwa gleich hell sind. Sie fanden keine Anzeichen dafür, dass mit zunehmender Größe die Helligkeit systematisch abnimmt. "Also ist auch kein ,Platz’ für bislang angenommene Übergangsgrößen. Vielmehr zeigen die von uns ausgewerteten Bilder, dass sich die kleinsten dunklen Flecken von den größten hellen Gebieten abgrenzen", so der Göttinger Astrophysiker Dr. Wiehr. Er arbeitete bei seinen Untersuchungen mit Dr. Johann Hirzberger vom Institut für Geophysik, Astrophysik und Meterologie der Universität Graz (Österreich) und Burkart Bovelet (Göttingen) zusammen.

Bei der Berechnung des magnetischen Kraftflusses, der sich aus dem Produkt von Fläche und Magnetfeldstärke ergibt, stießen die Wissenschaftler vielmehr auf eine "Lücke" zwischen beiden Bereichen. Schon seit 30 Jahren ist wissenschaftlich erwiesen, dass die Magnetfeldstärke der kleinen hellen Gebiete etwa 1.500 Gauss, also das 1.000-fache der Erdmagnetstärke, beträgt. In den größten hellen Strukturen von 300 Kilometer Durchmesser steckt demnach ein magnetischer Kraftfluss von 10 hoch 18 Maxwell. Für die dunklen Flecken ist aber seit langem bekannt, dass sie einen Kraftfluss von mindestens 10 hoch 19 Maxwell benötigen. "Dazwischen klafft offenbar die Differenz von einer ganzen Zehnerpotenz Magnetfluss, der auf der Sonne nicht vorkommt", erklärt Dr. Wiehr. Aufgrund dieser Ergebnisse vermuten die Astrophysiker, dass die dunklen Flecken und hellen Gebiete ganz unterschiedlicher Natur sind.

Die großen dunklen Sonnenflecken haben ihre Wurzeln in sehr tiefen Schichten, in denen die Sonnenenergie nicht in Form von Strahlung, sondern durch Wärmetransport nach außen abgegeben wird. In dieser "Konvektionszone" erzeugt ein gigantischer Dynamo-Prozess die Magnetfelder, die dann an der Oberfläche als dunkle Flecken erscheinen. Die hellen Magnetgebiete hingegen reichen womöglich bei weitem nicht so tief in die Sonne, sondern sind eher ein Oberflächenphänomen. Dr. Wiehr: "Dies zeigt sich auch darin, dass sie ,Spielball’ der brodelnden Bewegungen auf der Sonnenoberfläche sind, der so genannten Sonnen-Granulen, von denen sie hin und her geschubst werden, während die dunklen Flecken unbeweglich wie ein Fels im Chaos der Granulen-Bewegung verharren."

Kontaktadresse:

Dr. Eberhard Wiehr
Georg-August-Universität Göttingen
Fakultät für Physik
Universitäts-Sternwarte
Geismarlandstraße 11, 37083 Göttingen
Telefon (0551) 39-5048, Fax (0551) 39-5043
e-mail: ewiehr@astro.physik.uni-goettingen.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.astro.physik.uni-goettingen.de
http://www.edpsciences.org/articles/aa/abs/2004/30/contents/contents.html

Weitere Berichte zu: Astrophysik Durchmesser Kraftfluss Sonnenfleck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018 | Medizin Gesundheit

VDI sieht urbane Produktion und Logistik als integrale Teile der Stadt der Zukunft

19.07.2018 | Architektur Bauwesen

Infrarotsensor als neue Methode für die Wirkstoffentwicklung

19.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics