Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Asteroidentrümmer auf schnellem Kollisionskurs

15.07.2004


Über eine Million mehrere Kilometer grosse Asteroiden kreisen zwischen den Planeten Mars und Jupiter um die Sonne. Dort kommt es zu gewaltigen Kollisionen. Bisher nahm man an, dass die hierbei entstehenden Asteroidentrümmer mehrere Millionen Jahre brauchen, bevor sie mit der Erde kollidieren. Neue Messungen am Edelgaslabor der ETH Zürich zeigen jedoch, dass sie die Erde bereits viel früher erreichen. Diese Erkenntnisse haben grosse Bedeutung für die Vorhersage zukünftiger Einschläge von Meteoriten auf der Erde.

... mehr zu:
»Dooley »ETH »Kollision »Meteorit

Bei Kollisionen im Weltall werden die beteiligten Asteroiden komplett zerstört und in unzählige Bruchstücke zersplittert. Computersimulationen sagen voraus, dass die meisten dieser Fragmente in die Sonne stürzen. Ein Teil aber trifft die Erde nach mehreren Millionen Jahren als Meteoriten. Allerdings kann dies auch schon viel früher passieren. An bestimmten Stellen im Asteroidengürtel ist die Umlaufszeit eines Objekts um die Sonne ein Vielfaches der Umlaufszeit des Riesenplaneten Jupiter. Diese so genannten Bahnresonanzen führen zu Bahnstörungen. Sie können die Bahn des Objekts so weit ändern, dass es die Erdbahn kreuzt und mit der Erde kollidiert. Wann dies passiert, ist allerdings bisher nur theoretisch berechnet worden. Neuartige Messungen eines Forscherteams des Instituts für Isotopengeologie der ETH Zürich konnten nun mehr Klarheit schaffen: Das Team stellt fest, dass es schon nach einigen hunderttausend Jahren zu einer Kollision mit unserem Planeten kommen kann.

Konzentration der Edelgase gibt Auskunft über "Reisezeit"


Kollisionsbruchstücke von Asteroiden sind im Weltraum ständig dem Beschuss von kosmischer Strahlung ausgesetzt. Dabei entstehen durch Kernreaktionen auch Edelgase. Diese Gase gehen keine chemischen Reaktionen ein. Deshalb werden sie während der gesamten Bestrahlungsdauer, also der Aufenthaltszeit der Fragmente im Weltraum, in den Trümmern angesammelt. Nach der Messung der Konzentration dieser so genannten kosmogenen Edelgase lässt sich die Reisezeit vom Mutterkörper zur Erde berechnen. Je höher die Konzentration, desto länger war der Meteorit unterwegs.

Fossile Meteoriten als Zeugen einer Katastrophe

Für die Untersuchungen konnten die Forscher Meteoriten verwenden, von denen man annimmt, dass sie Zeugen einer der grössten Asteroidenkollisionen in der späten Geschichte des Sonnensystems sind. Diese Meteoriten sind in einem Steinbruch in Südschweden in 480 Millionen Jahre alten Meeresablagerungen gefunden worden. Erstaunlich dabei ist, dass die Trümmer noch heute Spuren der vor 500 Millionen Jahren angesammelten Edelgase aufweisen.

"Tom Dooley" erlaubt Messung kleinster Gasmengen

Das Edelgaslabor der ETH Zürich ist mit einem hochempfindlichen Massenspektrometer, genannt "Tom Dooley", auf die Messung extrem kleiner Gasmengen spezialisiert. Dieses an der ETH entwickelte Instrument komprimiert das Probengas in ein winziges Volumen, um die Konzentration so zu erhöhen, dass selbst seltene Gase wie Helium und Neon in einzelnen Staubkörnern gemessen werden können. Die Empfindlichkeit von "Tom Dooley" ist mehr als hundertfach höher als bei konventionellen Massenspektrometern. Die Apparatur ist weltweit einzigartig. An diesem Gerät entwickelte der junge Forscher Philipp Reza Heck eine Methode, um kleinste Mengen kosmogener Edelgase zu messen. Hierbei werden die nur einige Mikrogramm leichten Meteoritenproben mit einem Infrarotlaser geschmolzen und die Gase dabei freigesetzt und gereinigt. Anschliessend konnte Heck die Isotope der Elemente Helium und Neon mit "Tom Dooley" messen.

Bestätigung der kurzen Reisezeit

Mit dieser neuen Methode konnten die Edelgase in den Meteoriten erstmals nachgewiesen werden, obwohl sie bereits während 480 Millionen Jahren auf der Erde sind. Die daraus errechneten Reisezeiten sind mit einigen hunderttausend Jahren äusserst gering und entsprechen der unteren Grenze, die von Simulationen vorausgesagt wurden. Es handelt sich hierbei um die ersten Trümmer, die nach einer grossen Kollision vor 480 Millionen Jahren auf die Erde gelangten. Die kurzen Bestrahlungsalter sind ein Hinweis dafür, dass sich die Kollision in der Nähe einer Bahnresonanz im Asteroidengürtel ereignete. Ausserdem lässt sich beweisen, dass die fossilen Meteoriten aus Südschweden alle von demselben Ereignis stammen. Die neu entwickelte Methode des Instituts für Isotopengeologie ermöglicht es, Theorien über das Verhalten von Trümmern im Weltall zu bestätigen. Dies erleichtert es den Forschenden wesentlich, zukünftige Kollisionen mit unserem Planeten vorherzusagen.

Anke Poiger | idw
Weitere Informationen:
http://lexikon.astronomie.info/meteorite
http://www.psrd.hawaii.edu/Mar04/fossilMeteorites.html

Weitere Berichte zu: Dooley ETH Kollision Meteorit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics