Vom Staubkorn zum Planeten – Rätsel um Kollisionsbarriere gelöst

Protoplanetare Scheibe um den Stern HL Tauri, aufgenommen vom ALMA-Observatorium/Chile. Foto: Eso/ALMA

„Mehl bleibt an der Wand hängen, Sand nicht“, erklärt Astro-Physiker Prof. Gerhard Wurm alltagsnah, wie man sich die Kollisionsbarriere von Teilchen vorstellen muss. Diese „Bouncing Barrier“ in der Planetenentstehung treibt die Wissenschaft seit Jahrzehnten um.

„Unbestritten ist, dass die Staubkörner, die in der protoplanetaren Scheibe zusammenstoßen, niemals direkt zu Aggregaten wachsen können, die größer als ein Millimeter sind. Dennoch kann hieraus in Millionen von Jahren ein Planet mit einem Ausmaß von 10.000 km werden. Wie geht das?“

Die Idee der UDE-Physiker: Elektrische Ladung könnte Haftung geben. Dadurch dass die Staubaggregate immer wieder kollidieren, laden sie sich verschiedentlich auf und ziehen sich dann gegenseitig an.

„Ob das tatsächlich möglich ist, haben wir systematisch und in vielen Experimenten im Fallturm in Bremen untersucht. Die Partikelwolke haben wir durch millimetergroße Glaskugeln dargestellt und die Kugeln dann miteinander stoßen lassen“, sagt Wurm.

„Es war, wie wir vermutet haben: Sie haben sich positiv und negativ aufgeladen und bei den kleinen Geschwindigkeiten auch so stark, dass sie um mehrere Zentimeter gewachsen sind.“

Allein auf die Experimente wollte sich das achtköpfige Team jedoch nicht verlassen. Also überprüfte die Arbeitsgruppe von Professor Dietrich Wolf (Theoretische Physik) das Ganze durch Simulationen. Nach fast zwei Jahren Forschung steht für die UDE-Physiker nun fest: Beweis erbracht – Elektrische Ladung überwindet die Kollisionsbarriere!

„Wir sind sicher, eine Lücke in der Planetenentstehung geschlossen zu haben“, ist Professor Wurm überzeugt. „Noch sind aber viele Fragen offen, etwa wie groß die Aggregate am Ende werden können oder welche Rolle die Mineralzusammensetzung und die verschiedenen Temperaturen in den Gas- und Staubscheiben dabei spielen.”

* Electrical charging overcomes the bouncing barrier in planet formation', Nature Physics, veröffentlicht am 09.12.2019, DOI: 10.1038/s41567-019-0728-9

Prof. Dr. Gerhard Wurm, Experimentelle Astrophysik, Tel. 0203/37 9-1641, gerhard.wurm@uni-due.de

https://www.nature.com/articles/s41567-019-0728-9

Media Contact

Ulrike Bohnsack idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer