Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gibt es ein Tempolimit für das Denken?

08.03.2004


Abb.: Max-Planck-Forscher modellieren Hirnstrukturen als neuronale Netzwerke. Ihre neuesten Befunde zeigen, dass die komplizierte Verschaltungs-Struktur dieser Netzwerke zu einem Tempolimit für die Koordination der Netzwerkaktivität führt.

Bild: Max-Planck-Institut für Strömungsforschung


Göttinger Max-Planck-Forscher haben Geschwindigkeitsbeschränkung in komplexen neuronalen Netzwerken entdeckt


Die neuronalen Netzwerke im Gehirn bestehen aus einer Vielzahl ähnlicher Komponenten, die in scheinbar zufälliger Weise untereinander verbunden sind. Die Nervenzellen kommunizieren miteinander durch den Austausch von Pulsen über ihre Verbindungsstellen, die Synapsen. Doch anders als Atome in einem Kristall, die in einem regelmäßigen Gitter angeordnet sind, wachsen die synaptischen Verbindungen zwischen Nervenzellen hochgradig unregelmäßig. Neuro-Physiker des Göttinger Max-Planck-Instituts für Strömungsforschung und der Fakultät für Physik der Universität Göttingen sind jetzt der Frage nachgegangen, wie schnell sich die zahlreichen Komponenten eines komplexen Netzwerkes überhaupt koordinieren bzw. synchronisieren können. In Netzwerken pulsgekoppelter Oszillatoren, also einfachen Modellen neuronaler Netzwerke im Gehirn, entdeckten sie, dass die Geschwindigkeit der Synchronisation zwischen Nervenzellen eine obere Grenze hat, die von der Dichte ihrer Verschaltungen abhängt. (Physical Review Letters, 20. Februar 2004). Danach kann auch für die Informationsverarbeitung im Gehirn und unser Denken und Handeln eine Art Maximalgeschwindigkeit bestehen.

Um zu klären, welchen Einfluss die Struktur eines Netzwerks auf das kollektive Verhalten seiner Elemente hat, verwendeten die Göttinger Forscher die Theorie der so genannten Zufalls-Matrizen. Begründet durch Arbeiten von Eugene Wigner, der seinerzeit über Korrelationen zwischen Energieniveaus in Atomkernen arbeitete, wurde die Theorie der Zufalls-Matrizen seit den 1950er Jahren ausführlich untersucht. Seither hat sich der Anwendungsbereich dieser Theorie ständig erweitert und umfasst heute viele verschiedenartige Phänomene, die von quantenmechanischen Aspekten des Chaos bis hin zu Preis-Fluktuationen auf Finanzmärkten reichen.


Marc Timme, Fred Wolf und Theo Geisel haben nun gezeigt, dass die Theorie der Zufalls-Matrizen auch dafür geeignet ist, die Dynamik in komplexen Netzwerken zu analysieren. Dieses neuartige Herangehen erlaubt es, systematisch zu erforschen, welche Auswirkungen die Topologie, also die innere Struktur eines Netzwerks, auf seine Dynamik hat. Mit Hilfe der Zufalls-Matrix-Theorie haben die Göttinger Wissenschaftler mathematische Ausdrücke gefunden, mit deren Hilfe sich präzise bestimmen lässt, wie schnell Neurone ihre Aktivität koordinieren können, also auch, wie schnell sich neuronale Netzwerke synchronisieren können. Diese mathematischen Ausdrücke sagen die Abhängigkeit der Synchronisationsgeschwindigkeit von Eigenschaften einzelner Neurone wie auch von der Netzwerktopologie genau vorher.

Wie intuitiv zu erwarten war, fanden die Max-Planck-Forscher, dass Neurone sich umso schneller synchronisieren, je stärker die synaptischen Verbindungen zwischen ihnen sind. Überraschend zeigt diese Studie aber auch, dass es eine Geschwindigkeitsbeschränkung für die Synchronisation des Netzwerks gibt: Auch bei beliebig starken Wechselwirkungen kann die Synchronisationsgeschwindigkeit nicht schneller sein als eine maximale Grenzgeschwindigkeit. Dieses Tempolimit wird durch die komplizierte Verschaltungs-Struktur des Netzwerkes festgelegt und würde nicht auftreten, wenn jedes Neuron mit jeder anderen Nervenzelle in dem Netzwerk verbunden wäre. Diese Grenze für die Synchronisationsgeschwindigkeit beruht darauf, dass sogar dann, wenn nur ein einziges Neuron vom vollständig synchronen Verhalten des neuronalen Netzes abweicht, diese Information über das gesamte Netzwerk transportiert werden muss, bevor es wieder zu einer vollständigen Synchronisation kommt.

"Unter der Voraussetzung, dass diese Analyse die Schlüsselmechanismen zur Koordination der Aktivität in neuronalen Netzwerken des Gehirns qualitativ korrekt beschreibt, bedeutet dies, dass die Geschwindigkeit neuronaler Informationsverarbeitung, also unser Denken und Handeln, erheblich durch die Verschaltungs-Struktur des Netzwerks beschränkt wird", sagt Prof. Theo Geisel, Direktor am Max-Planck-Institut für Strömungsforschung. "So hat unsere Analyse gezeigt, dass in Zufallsnetzwerken die Synchronisationsgeschwindigkeit nur sehr langsam mit der mittleren Anzahl von Verbindungen pro Neuron zunimmt. Das bedeutet also, dass Hirn-Areale, in denen ein schneller Informationsaustausch essentiell ist, hochgradig vernetzt sein müssen, um ihre Funktion adäquat erfüllen zu können."

Originalveröffentlichung:

Marc Timme, Fred Wolf, Theo Geisel
Topological Speed Limits to Network Synchronization


Weitere Informationen erhalten Sie von:

Dr. Marc Timme
Max-Planck-Institut für Strömungsforschung, Göttingen
Tel.: 0551 5176-440
Fax: 0551 5176-409
E-Mail: timme@chaos.gwdg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/instituteProjekteEinrichtungen/institutsauswahl/stroemungsforschung/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

nachricht Was Einstein noch nicht wusste
20.09.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

Gesundheitstipps und ein virtueller Tauchgang zu Korallenriffen

20.09.2018 | Veranstaltungen

Internationale Experten der Orthopädietechnik tagen in Göttingen

19.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungsnachrichten

Was Einstein noch nicht wusste

20.09.2018 | Physik Astronomie

One step ahead: Adaptive Radarsysteme für smarte Fahrerassistenz

20.09.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics