Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Atomlaser wird von Magnetfeldern nicht beeindruckt

18.12.2003


Aus einem besonderen Zustand der Materie, dem Bose-Einstein-Kondensat, lässt sich ein Atomlaser erzeugen. Doch bisher war mit den für die Anwendung interessanten Atomlasern nicht immer etwas anzufangen, weil sie empfindlich auf Magnetfelder reagieren. Dem Physiker Prof. Martin Weitz ist es mit einem Kunstgriff, einer "optischen Pinzette" und einem inhomogenen Magnetfeld, gelungen, Atomlaser zu erzeugen, die von Magnetfeldern unabhängig sind.



Tübinger Physiker veröffentlichen Forschungsergebnisse in den "Physical Review Letters"



Von Lasern ist immer häufiger die Rede. Sie tasten CDs beim Abspielen ab, helfen in der Medizintechnik beim Anschweißen der abgelösten Netzhaut im Auge oder bohren präzise auch winzige Löcher. Solche Laser funktionieren mit Licht. Im Gegensatz etwa zu einer Glühbirne produzieren Laser ein nahezu paralleles Lichtbündel aus Licht einer einzigen Farbe. Doch statt Licht lassen sich auch Atome zu einem Laser bündeln. Mit einem Atomlaser können Mikroskope mit besonders hoher Auflösung konstruiert werden oder auch Atominterferometer, mit denen sich zum Beispiel Gravitationsmessungen durchführen lassen. Allerdings waren Atomlaser in der Praxis bisher noch nicht gut einsetzbar, weil sie sehr empfindlich auf den Einfluss von magnetischen Streufeldern reagieren - und die sind praktisch überall. Jetzt ist es Prof. Martin Weitz vom Physikalischen Institut der Universität Tübingen mit seiner Forschergruppe, Giovanni Cennini, Gunnar Ritt und Carsten Geckeler, gelungen, einen Atomlaser zu konstruieren, der sich von Magnetfeldern nicht stören lässt. Die Ergebnisse ihrer einfallsreichen Experimente haben sie auch in der angesehenen Fachzeitschrift "Physical Review Letters" (Band 91, Nr. 24 vom 12. Dezember 2003) veröffentlicht.

Um einen Atomlaser herzustellen, braucht man zunächst ein Bose-Einstein-Kondensat. Das ist kein bestimmter Stoff, sondern ein besonderer Zustand der Materie, der weder als fest noch als flüssig oder gasförmig zu beschreiben ist und der bei sehr tiefen Temperaturen, dicht am absoluten Nullpunkt von minus 273,15 Grad Celsius, auftreten kann. Dass es einen Materiezustand gibt, bei dem alle Atome den gleichen Energiezustand annehmen, hatten der indische Physiker Satyendra Nath Bose und Albert Einstein bereits 1923 theoretisch berechnet. Doch erst 1995 ist es gelungen, Bose-Einstein-Kondensate auch im Experiment zu erzeugen. Dafür erhielten die beiden Amerikaner Eric Cornell und Carl Wieman sowie der gebürtige Deutsche Wolfgang Ketterle vom Massachusetts Institute of Technology (MIT) in Cambridge 2001 den Physik-Nobelpreis. "Materie kann man physikalisch gesehen als ungeordnete Wellen beschreiben. Wenn man die Materie immer weiter abkühlt, finden sich die kleineren Wellen schließlich zu einer Riesenwelle zusammen, in der sich die Atome völlig gleichförmig verhalten. Das wird als Bose-Einstein-Kondensat bezeichnet", erklärt Martin Weitz. Bildlich werden die Kondensate auch als "Atome im Gleichschritt" beschrieben, die - ähnlich wie disziplinierte Soldaten - alle das gleiche tun und nicht wild durcheinanderlaufen. Aus einem Bose-Einstein-Kondensat lässt sich ein Strahl von Atomen auskoppeln, ein Atomlaser. "Dass ein solcher Atomlaser empfindlich auf Magnetfelder reagiert, liegt daran, dass die Energie der Atome sozusagen "schwabbelt" wie das Wasser, wenn man in die Badewanne steigt", sagt Weitz. Münchner Forscher hätten dann mit Magnetfeldabschirmungen im Labor experimentiert, die aber sehr aufwendig seien. Die Tübinger Physiker wählten einen anderen Ansatz: Sie wollten die Atome senkrecht zu den Linien der Magnetfelder anordnen, denn in diesem Zustand werden sie vom Magnetfeld nicht beeinflusst. "Dieses Prinzip ist seit langem bekannt und wird zum Beispiel bei Atomuhren genutzt", sagt der Physiker.

Um Atome zu fangen, benutzen die Physiker, wie man es sonst bei Mäusen macht, eine Falle. "Bei den üblichen Magnetfallen wird ein inhomogenes Magnetfeld angelegt, bei dem die Feldlinien nicht gleichmäßig verlaufen", sagt Martin Weitz. Die Atome befänden sich dann in den drei so genannten Zeeman-Zuständen plus eins, null und minus eins. Doch nur im Zustand null stehen die Atome senkrecht zu den Magnetfeldlinien. Um an diese Atome heranzukommen, haben sich die Tübinger Wissenschaftler eine andere Vorgehensweise überlegt: Die Atome halten sie zunächst mit einer "optischen Pinzette" fest. Sie benutzen dafür Rubidium-Atome und einen fokussierten, also einen auf einen zentralen Punkt gerichteten Lichtlaser im Infrarotbereich als optische Dipolfalle. In dem Laserstrahl werden die Atome zu Dipolen, das heißt, die elektrischen negativen Ladungen sammeln sich auf der einen Seite des Atoms, die positiven auf der anderen. Die Rubidium-Atome werden durch das Laserlicht bereits stark gekühlt, wenn auch nicht stark genug, um ein Bose-Einstein-Kondensat zu erzeugen. "Wir hatten uns vorher in der Theorie überlegt, dass wir für dieses Experiment einen besonders stark fokussierten Laserstrahl benötigen, das war unser erster Trick bei dieser Sache", sagt Martin Weitz.

Noch immer hatten die Forscher unter den in der Pinzette festgehaltenen Atomen alle drei Zeeman-Zustände. "Während des Experimentierens sind wir dann darauf gekommen, dass wir nun zusätzlich ein inhomogenes Magnetfeld anlegen müssen, um die Atome im Zeeman-Zustand null von den anderen zu isolieren", erzählt der Wissenschaftler, wie sie auf den zweiten entscheidenden Trick kamen. Die Atome wurden nun weiter heruntergekühlt durch Erzeugung von Verdunstungskälte. "Dabei verdampfen die heißesten Atome am schnellsten, das sind die in den Zeeman-Zuständen plus eins und minus eins. Im Fokus des Lichtlasers befindet sich das Maximum des elektrischen Feldes, dort sammeln sich nun die gewünschten Atome im Zeeman-Zustand null", so der Forscher. Unterdessen werden beim weiteren Runterkühlen die Atome, die auch als Wellenpakete beschrieben werden können, immer länger. Bei 300 Nanokelvin, ganz dicht über dem absoluten Nullpunkt, entsteht aus den Wellenpaketen eine Riesenwelle, ein Bose-Einstein-Kondensat. Im Kondensat sind dann nur noch Atome im Zeeman-Zustand null, die sich von Magnetfeldern nicht beeindrucken lassen. Schließlich wird die optische Pinzette abgeschwächt, die Atome purzeln sozusagen in einem Strahl herunter - der Atomlaser ist fertig und von Magnetfeldern unabhängig.

Die lange Beschreibung entspricht allerdings nicht den Echtzeiten des Experiments: "In der optischen Pinzette können wir die Atome ungefähr fünf Sekunden festhalten, der Atomlaserstrahl mit 5000 bis 10 000 Atomen besteht 10 bis 20 tausendstel Sekunden", sagt Martin Weitz. Das ist sehr kurz, reicht aber für die ersten Versuche. "Das ist einfach eine Frage der Dimension. Für Anwendungen des Atomlasers braucht man ein größeres Bose-Einstein-Kondensat, also einen größeren Lichtlaser für die Vorkühlung der Atome", erklärt er. Die bisherige Grundlagenforschung liegt dicht an möglichen Anwendungen. Die Tübinger Physiker, die durch die Finanzierung eines Schwerpunktes der Landesstiftung inzwischen einen größeren Lichtlaser zur Verfügung haben, reizen jedoch auch grundlegende Forschungen: Sie wollen nun prüfen, ob sich die gewonnenen Erkenntnisse für den Bau eines besonders schnellen und leistungsfähigen Quantencomputers nutzen ließen. (6754 Zeichen)

Nähere Informationen:

Prof. Martin Weitz
Physikalisches Institut
Auf der Morgenstelle 14
72076 Tübingen
Telefon 07071/29762-65
Fax 07071/295829
E-Mail: martin.weitz@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.uni-tuebingen.de/uni/qvo/pd/pd.html

Weitere Berichte zu: Atomlaser Bose-Einstein-Kondensat Lichtlaser Magnetfeld

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics