Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals hochenergetische Komponente der kosmischen Strahlung gemessen

06.11.2003


Internationales Pierre-Auger-Observatorium in Argentinien misst erstmals hochenergetische Komponente der kosmischen Strahlung


Die zweite Teleskopstation des Pierre-Auger- Observatoriums blickt von oben über die Pampa Amarilla, die in den kommenden zwei Jahren mit 1600 Wassertanks im Abstand von jeweils 1,5 Kilometer "gefüllt" wird.


Glitzernd wie ein Brillant: Eine Photomultiplier-Kamera des Pierre-Auger-Observatoriums liefert 10 Millionen Bilder in der Sekunde und verstärkt dabei die Lichtimpulse von einem 11 Quadratmeter großen Spiegel.



Gleich zwei Meilensteine wurden beim internationalen Pierre-Auger-Projekt in Argentinien im Lauf der letzten Wochen erreicht - und konnten auch gleich mit einer seltenen Messung gefeiert werden. Nach Fertigstellung der zweiten Teleskopstation - unter Federführung des Forschungszentrums Karlsruhe und der Universität Karlsruhe - können die Wissenschaftler dort Leuchtspuren der kosmischen Strahlung räumlich aufgelöst beobachten. Schon in der zweiten Beobachtungsnacht ging ihnen ein Teilchen der hochenergetischen Komponente der kosmischen Strahlung ins Netz. Darüber hinaus wurde von der Kollaboration der einhundertste Oberflächendetektor zum Partikelnachweis in Betrieb gesetzt. Das Pierre-Auger-Observatorium wurde damit schon jetzt, zwei Jahre vor der Fertigstellung, zum weltweit größten Flächendetektor für die Untersuchung der kosmischen Strahlung.



Die zweite Teleskopstation des Pierre-Auger- Observatoriums blickt von oben über die Pampa Amarilla, die in den kommenden zwei Jahren mit 1600 Wassertanks im Abstand von jeweils 1,5 Kilometer "gefüllt" wird.

In der argentinischen Pampa Amarilla, 1000 Kilometer westlich von Buenos Aires, entsteht mit dem Pierre-Auger-Observatorium das größte Messfeld der Welt zur Untersuchung der kosmischen Strahlung. Auf einer Fläche von 3000 Quadratkilometern sollen hier die energiereichsten Atomkerne untersucht werden, die im Universum zu finden sind. Ihre Herkunft ist unbekannt, ihre Energien sind Hunderte Millionen mal höher, als sie in den größten irdischen Teilchenbeschleunigern erzeugt werden können. Dafür sind sie extrem selten: Weniger als ein Ereignis pro Quadratkilometer und Jahrhundert sagen die Wissenschaftler voraus.
Die Beobachtung dieser kosmischen Überflieger kann vom Erdboden aus erfolgen: Die einfallenden Atomkerne lösen durch Zusammenstoß mit den Bestandteilen der Atmosphäre weitere Partikel aus, die eine Leuchtspur erzeugen und auf die Erdoberfläche vordringen. Beide Signale, die Leuchtspur in der Atmosphäre und die zum Erdboden vordringenden Partikel können mit zwei aufeinander abgestimmten Komponenten des Pierre-Auger-Observatoriums gemessen werden: Teleskopstationen mit Fluoreszenzdetektoren verfolgen die Leuchtspur und großflächig verteilte Detektoren messen die auftreffenden Teilchen.
Bei beiden Komponenten wurden in diesen Tagen wichtige Meilensteine erreicht: Mit der Inbetriebnahme einer zweiten Teleskopstation ist es nun möglich, die Leuchtspuren in der Atmosphäre räumlich aufgelöst zu beobachten und damit die Richtung ihrer Herkunft zu lokalisieren. "In den letzten Tagen konnten wir erstmals Signale aus beiden Teleskopstationen gleichzeitig messen", freut sich Professor Dr. Johannes Blümer, Leiter des Instituts für Kernphysik des Forschungszentrums Karlsruhe. "Das ist nur in klaren Neumondnächten möglich, weil die Stärke der Signale nur dem Vorbeiflug einer 20-Watt-Lampe mit Lichtgeschwindigkeit in 10 Kilometer Entfernung entspricht."
Schon in der zweiten Beobachtungsnacht, am 25. Oktober 2003, konnte ein Teilchen der hochenergetischen Komponente der kosmischen Strahlung beobachtet werden. Aufgrund der Messungen in beiden Teleskopstationen wurde die Energie auf 2x1019 Elektronenvolt berechnet. In diesem einen Atomkern war etwa die Energie eines aufgeschlagenen Tennisballs konzentriert.
Außerdem nahmen die Wissenschaftler den einhundertsten Detektor für die zur Erdoberfläche vordringenden Partikel in Betrieb. Diese Detektoren sind gefüllt mit jeweils 12 000 Liter hochreinem Wasser. Beim Eindringen der Partikel entstehen hier charakteristische Lichtblitze, so genannte Cherenkov-Strahlung. "Das Pierre-Auger-Observatorium umfasst nun eine Fläche von über 100 Quadratkilometern und ist damit das weltweit größte Instrument zur Beobachtung der kosmischen Strahlung", fährt Johannes Blümer fort. "Selbst diese Größe reichte aber nicht aus, um das Ereignis vom 25. Oktober zu messen. Der Partikelschauer ging knapp neben dem derzeitigen Messfeld nieder. Aber wir wachsen kontinuierlich."
Am Pierre-Auger-Observatorium arbeiten 54 Forschungseinrichtungen aus 15 Nationen mit. Nach der Fertigstellung im Jahr 2005 werden 1600 Wassertanks auf einer Fläche von 3000 Quadratkilometern stehen. Vier Teleskopstationen mit Fluoreszenzdetektoren werden die Leuchtspuren der kosmischen Strahlung verfolgen. Auch auf diesem riesigen Messfeld erwarten die Forscher jährlich nur etwa 30 Beobachtungen der höchstenergetischen Partikel im Universum. Das Observatorium kann auch Teilchen hinunter bis zu einem Zehntel der Energie des Stereo-Ereignisses registrieren: in diesem Bereich werden zehntausende Beobachtungen jährlich erwartet.
Noch in anderer Hinsicht ist das Pierre-Auger-Observatorium ein ungewöhnliches Projekt: Durch technische Verbesserungen und Einsparungen ist es gelungen, die ursprünglich geplanten Kosten von 55 Millionen Dollar auf rund 48 Millionen zu drücken. Lange vor der Fertigstellung des "Südobservatoriums" denken die Wissenschaftler nun schon über ein vergleichbares Instrument auf der Nordhalbkugel, voraussichtlich in den USA, nach, um in alle Himmelsrichtungen beobachten zu können.

Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24 000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Inge Arnold | idw
Weitere Informationen:
http://www.fzk.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics