Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem größten Zielfernrohr auf Planetenjagd

13.06.2003


Max-Planck-Institut für Astronomie und ESO starten Projekt CHEOPS zur direkten Abbildung extrasolarer Planeten mit dem Very Large Telescope


Skizze des geplanten CHEOPS-Instruments an der Nasmyth-Plattform des Very Large Telecops (blau im Hintergrund). Rot dargestellt ist der Wellenfrontsensor, orange das differentielle Polarimeter und grün der abbildende Spektrograph.

Foto: Max-Planck-Institut für Astronomie


Links oben: Kombinierte Spektren von Stern und Planet auf dem Detektor von CHEOPS (Simulation). Mitte: Differenzbild zwischen drei Spektralbereichen, einer davon eine Absorptionslinie der Planetenatmosphäre. Rechts unten: Schnitt durch die mittlere Abbildung. Der Planet, mit einem Kontrast von 1:1 Million zum Zentralstern im Abstand einer Winkelsekunde, wird hier nach 10 s simulierter Beobachtungszeit mit einem Signal-zu-Rausch-Verhältnis von 10 detektiert.

Foto: Max-Planck-Institut für Astronomie



Einen Vertrag über die Durchführung einer Machbarkeitsstudie zur direkten Abbildung extrasolarer Planeten von den Teleskopen der ESO in Chile aus haben das Max-Planck-Institut für Astronomie (MPIA), Heidelberg, und die Europäische Südsternwarte (ESO), Garching, soeben unterzeichnet. Das MPIA führt hierzu ein europäisches Konsortium, bestehend aus zehn Instituten aus Deutschland, Italien, der Schweiz, Holland und Portugal an. Die Studie soll nachweisen, dass man nach Jupiter-ähnlichen Riesenplaneten bei Sternen in der näheren Umgebung der Sonne auch mit erdgebundenen Teleskopen erfolgreich suchen kann, und gleichzeitig das Konzept für ein dafür geeignetes Instrument entwickeln. Die ESO plant, eines der vier 8-Meter-Teleskope ihres "Very Large Telescope" in Chile ab dem Jahr 2008 mit einem derartigen Instrument auszurüsten.

... mehr zu:
»CHEOPS »Chile »ESO »Planet


Die Studie soll das Konzept für ein Beobachtungsinstrument entwickeln, mit dem es möglich ist, echte Bilder von Jupiter-ähnlichen Planeten bis zu einer Entfernung von etwa 50 Lichtjahren von der Erde aus aufzunehmen. Darüber hinaus könnten Planeten auch in Systemen, die erheblich jünger sind als das Sonnensystem, noch bis in eine Entfernung von etwa 300 Lichtjahren gefunden werden. Doch mit dem Instrument sollen nicht nur die Planeten entdeckt, sondern zugleich auch ihre Atmosphäre spektral und polariemetrisch klassifiziert werden. Daher trägt das Projekt auch den Titel CHEOPS CHarakterisierung Extrasolarer Planeten durch Opto-infrarote Polarimetrie und Spektroskopie.

Einen nahe zur Erde gelegenen, Jupiter-ähnlichen Planeten auf einer ebenfalls Jupiter-ähnlichen Umlaufbahn um sein Zentralgestirn zu entdecken, wäre eine wissenschaftliche Sensation: Damit würde erstmals ein Sternensystem gefunden, welches tatsächlich große Ähnlichkeit mit unserem Sonnensystem aufweist, und das für die weitere Suche nach (bewohnten?) erdähnlicher Planeten mit Hilfe von Weltraummissionen wie "DARWIN" (ESA) und "Terrestrial Planet Finder" (NASA) von großer Bedeutung wäre.

Eine besondere technische Herausforderung ist die Überwindung der extrem hohen Kontraste zwischen Stern und Planet (etwa 1:108) bei extrem kleinen Abständen (weniger als eine Winkelsekunde). Dazu müssen eine Reihe innovativer Techniken eingesetzt werden: Zunächst soll ein Adaptives Optiksystem extrem hoher Qualität die durch die Erdatmosphäre verursachten Bildverzerrungen korrigieren. Damit können Bilder von bislang am Erdboden unerreichter Qualität gewonnen werden. Auf diese Weise sollen bis zu 80 Prozent der Bildqualität eines vergleichbaren Weltraumteleskops im Spektralbereich zwischen sichtbarem und nahem Infrarotlicht erreicht werden. Dieser Teil des Instrumentes soll wesentlich im Max-Planck-Institut für Astronomie in Heidelberg gebaut werden.

Doch diese Technik allein kann das Halo, also den Lichthof der hellen Sterne nicht ausreichend unterdrücken, um das hundertmillionenfach schwächere Signal eines Planeten zu entdecken. Daher wird CHEOPS sowohl ein Spektrometer, ein Projekt des Observatoriums von Padua, als auch ein Polariemeter, das von der ETH Zürich geliefert werden soll, im so genannten differentiellen Modus betreiben. Hierbei werden die eintreffenden Photonen erst nach Wellenlänge oder Polarisationszustand sortiert, bevor sie zu einem Bild aufaddiert werden. Da sich Spektrum und Polarisation der Photonen deutlich unterscheiden, je nachdem ob sie von der Sternen- oder der Planetenoberfläche stammen, kann auf diese Weise ein Differenzbild erzeugt werden, das dann ein detektierbares Planetensignal enthält.

Sind die technischen Schwierigkeiten einmal überwunden, hat ein bodengebundenes Instrument bei der Suche nach extrasolaren Planeten viele Vorteile: Dazu gehören vor allem die im Vergleich zu weltraumgestützten Instrumenten wesentlich geringeren Kosten (Gesamtkosten von CHEOPS: etwa 7 Millionen Euro ) und die sehr schnelle Machbarkeit. Hinzu kommt, dass am Erdboden nach wie vor auch die deutlich größeren Teleskopspiegel zur Verfügung stehen.

Weitere Informationen erhalten Sie von:

Dr. Markus Feldt (Projektleiter)
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 - 528-262
Fax.: 06221 - 528-246
E-Mail: mfeldt@mpia.de

Dr. Jakob Staude
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 - 528-229
E-Mail: staude@mpia-hd.mpg.de

Dr. Jakob Staude | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/astronomie/index.html

Weitere Berichte zu: CHEOPS Chile ESO Planet

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics