Blick auf unendlich kleine zeitliche und räumliche Bereiche

DFG fördert Schwerpunktprogramm zu Elektronentransfer mit sechs Millionen Mark / Federführung liegt beim Physikalischen Institut der Universität Münster

Die Erforschung des Transfers von Elektronen spielt sich in unvorstellbar geringen zeitlichen und räumlichen Bereichen ab. Globale Modelle gibt es bereits seit längerem, doch die mikroskopischen Mechanismen dieser Reaktionen sind noch nicht bekannt. Sie zu erforschen ist das Ziel des Schwerpunktprogrammes „Dynamik von Elektronentransferprozessen an Grenzflächen“, das von der Deutschen Forschungsgemeinschaft (DFG) in den ersten zwei Jahren mit rund 6,5 Millionen Mark gefördert wird und jetzt seine Arbeit aufgenommen hat. Die Federführung dieses interdisziplinären und hochschulübergreifenden Projektes liegt beim Physikalischen Institut der Universität Münster, initiiert wurde es von Prof. Dr. Helmut Zacharias.

Viele wichtige Prozesse in biologischen, chemischen und physikalischen Systemen werden durch den Transfer von Elektronen aus gelöst. Beispiele dafür sind die Photosynthese in Pflanzen und die Mechanismen beim Sehen, katalytische Reaktionen an Grenzflächen, wie im Abgaskatalysator oder bei großtechnischen Synthesereaktoren, sowie Prozesse in Brennstoffzellen und in Solarzellen. Bei all diesen Vorgängen werden den aktiven Molekülen über eine Grenzfläche hinweg Elektronen aus einem Reservoir zur Ver fügung gestellt. Erst dadurch werden die vorher neutralen Moleküle aktiviert und die interessierenden Vorgänge Reaktionen und Energietransfer eingeleitet.

Wie das funktioniert, soll jetzt erforscht werden. Die Schwierigkeit liegt darin, dass dieser Prozess zeitlich im Bereich von einer bis 1000 Femtosekunden angesiedelt ist. Zur Verdeutlichung: 1000 Femtosekunden sind der millionste Teil einer millionstel Sekunde. Erst seit wenigen Jahren ist es möglich, neben einer Ortsauflösung in atomaren Dimension auch die Zeitauflösung in diesen ultrakurzen Zeitbereich direkten Experimenten zugänglich zu machen.

Auf der Nanometerskala, auf der ein Nanometer dem milliardstel Teil eines Meters entspricht, werden auf Oberflächen einzelne Moleküle mit Rastertunnelverfahren spektroskopisch untersucht mit dem Ziel, die dadurch gefundenen elektronischen Zustände auszunutzen, um die Moleküle zu manipulieren. So konnten schon einzelne Moleküle isoliert und gezielt zum Leuchten gebracht werden. Man kann sogar daran denken, künftig eventuell Reaktionen zwischen künstlich nebeneinander gebrachten Molekülen gezielt auszulösen, um Produkte zu erzeugen, die ohne eine solche Manipulation nicht entstehen würden. Eine solche Nanofabrikation kann Wege zu ganz neuen Produkten eröffnen. Denkbare Anwendungen lassen sich später im künftigen Centrum für Nanotechnologie (CeNTech) realisieren.

Zur Untersuchung der Dynamik des Elektronentransferprozesses im Zeitbereich werden zwei Laserpulse mit Dauern zwischen 20 und 100 Femtosekunden eingesetzt. Der erste Puls modifiziert die zu untersuchende Probe, mit dem zweiten, präzise verzögerten Puls werden Veränderungen, die der erste Puls ausgelöst hat, erkannt. Mit einer solchen Pump-Probe-Technik kann man eine Zeitauflösung von einer Femtosekunde oder sogar noch darunter erreichen. In einer Femtosekunde legt Licht, das für die Strecke von der Erde zum Mond nur etwa eine Sekunde benötigt, nur einen Weg von 300 Nanometern zurück. Die optischen Aufbauten, die zwei Lichtpunkte um eine solche Strecke verzögern, müssen also entsprechend hochpräzise sein.

Im Anfangsstadium sollen die Untersuchungen zu den auftretenden Energieverlusten, dem Transport von sogenannten heißen Elektronen, ihrer Beweglichkeit in nur zwei Raumdimensionen und einer gezielten Steuerung an geeigneten Modellsystemen durchgeführt werden. Später ist die Einbindung von komplexen Systemen, wie organischen Filmen oder molekularbiologischen Modellsystemen, geplant. Diese spielen beispielsweise auch für die Biokompatibilität von medizinischen Implantaten wie Siliziumkarbid für Herzklappen eine große Rolle.

Im Forschungsverbund arbeiten bundesweit verschiedene Arbeitsgruppen zusammen, um den Erkenntnisstand im internationalen Maßstab voranzubringen. Neben Experimentatoren ist eine enge Verbindung mit theoretisch arbeitenden Gruppen notwendig, um die Ergebnisse interpretieren zu können. Hier ist die Arbeitsgruppe von Prof. Dr. Johannes Pollmann aus dem Institut für Theoretische Festkörperphysik der Universität Münster federführend beteiligt. Insgesamt ist das Programm auf sechs Jahre und einen Förderumfang von etwa 14 bis 16 Millionen Mark angelegt.

Weitere Informationen finden Sie im WWW:

Media Contact

Brigitte Nussbaum

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer