Lampen für extremes Ultraviolett

©AIXUV Elektrische Entladung in einem dichten Plasma des Edelgases Argon. Bei 250 000 °C sendet die wenige Millimeter große helle Zone extreme UV-Strahlung aus.

Lithographische Verfahren erzeugen die feinen Strukturen auf Halbleitern. Bei fortschreitender Miniaturisierung werden Strahlungsquellen mit immer kürzeren Wellenlängen nötig. Nun ist die erste Laborlampe erhältlich, die UV-Strahlung nahe dem Röntgenbereich liefert.

An den Steindruck, den Alois Sennefelder am Ende des 18. Jahrhunderts erfand, erinnert noch der Begriff »Lithographie«. Mikroelektronische Schaltungen werden heute mit lithographischen Methoden auf Halbleiter belichtet und hier wie vor 200 Jahren sind die Ziele die gleichen: Immer kleinere Strukturen sollen immer schneller und immer kostengünstiger übertragen werden. Stark begrenzt wird diese Entwicklung durch die Wellenlänge der verwendeten Lampen – viel feiner geht es nicht.

Für die Serienfertigung von integrierten Schaltkreisen verwendet die Industrie derzeit Laser, die Strahlung im nahen Ultraviolett (248 Nanometer) abgeben. Doch für die nächsten Chipgenerationen hat sie den Weg zu Lampen mit immer kürzeren Wellenlängen angetreten. Lampen im extremen Ultraviolett (EUV bei 10-15 Nanometern) am Übergang zur Röntgenstrahlung werden voraussichtlich ab dem Jahr 2006 eingesetzt.

Der erste kommerzielle Anbieter solcher EUV-Lampen für Labors ist das Unternehmen AIXUV GmbH in Aachen, eine Ausgründung des Fraunhofer-Instituts für Laserphysik ILT. Der Geschäftsführer Dr. Rainer Lebert erinnert sich: »Im September diesen Jahres gründeten wir AIXUV. Mit dem Fraunhofer-Institut schlossen wir einen Linzenzvertrag für die Produktion einer EUV-Lampe ab und weiterhin konnten wir das Unternehmen Lambda Physik AG – einem Technologieführer für Lithographielaser – als Investor gewinnen. Im kommenden Frühjahr werden wir beginnen, EUV-Lampen zu produzieren.«

Ihre Technik: In einer Entladungsröhre wird ein Gas mit einem sehr starken elektrischen Strom von etwa 10 000 Ampère aufgeheizt. Je nach Anwendung handelt es sich dabei um Xenon, Fluor, Sauerstoff aber auch Luft. Es bildet sich ein Plasma, das erheblich dichter und mit 250 000 °C mehr als zehnmal heißer ist, als das in den bekannten Leuchtstoffröhren. Dank der patentierten Entladungsgeometrie der Röhre bildet sich eine Zone von einem halben Millimeter Durchmesser und einigen Millimetern Länge, aus der das Plasma bis zu hundertmal pro Sekunde extreme UV-Strahlung emittiert. Das Gerät, in das die eigentliche Lampe integriert ist, zeichnet sich durch einige Vorteile
gegenüber anderen Strahlungsquellen aus. Es lässt sich schnell an seinem Einsatzort aufbauen, ist einfach zu bedienen, arbeitet lange und stabil und ist kostengünstig in Anschaffung und Betrieb.

Weitere Informationen finden Sie im WWW:

Media Contact

Dr. Johannes Ehrlenspiel idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer